Issue |
A&A
Volume 640, August 2020
|
|
---|---|---|
Article Number | A51 | |
Number of page(s) | 20 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202038251 | |
Published online | 10 August 2020 |
Carbon isotopic fractionation in molecular clouds
1
Università degli studi di Firenze, Dipartimento di fisica e Astronomia,
Via Sansone 1,
50019
Sesto Fiorentino, Italy
e-mail: lcolzi.astro@gmail.com, laura.colzi@unifi.it
2
INAF – Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5,
50125
Florence, Italy
3
Max-Planck-Institüt für extraterrestrische Physik,
Giessenbachstrasse 1,
85748
Garching bei München, Germany
4
Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA,
92190
Meudon, France
Received:
24
April
2020
Accepted:
4
June
2020
Context. Carbon fractionation has been studied from a theoretical point of view with different models of time-dependent chemistry, including both isotope-selective photodissociation and low-temperature isotopic exchange reactions.
Aims. Recent chemical models predict that isotopic exchange reactions may lead to a depletion of 13C in nitrile-bearing species, with 12C/13C ratios two times higher than the elemental abundance ratio of 68 in the local interstellar medium. Since the carbon isotopic ratio is commonly used to evaluate the 14N/15N ratios with the double-isotope method, it is important to study carbon fractionation in detail to avoid incorrect assumptions.
Methods. In this work, we implemented a gas-grain chemical model with new isotopic exchange reactions and investigated their introduction in the context of dense and cold molecular gas. In particular, we investigated the 12C/13C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2 × 103 to 2 × 107 cm−3, respectively.
Results. We suggest a possible 13C exchange through the 13C + C3 → 12C +13CC2 reaction, which does not result in dilution, but rather in 13C enhancement, for molecules that are formed starting from atomic carbon. This effect is efficient in a range of time between the formation of CO and its freeze-out on grains. Furthermore, the parameter-space exploration shows, on average, that the 12C/13C ratios of nitriles are predicted to be a factor 0.8–1.9 different from the local 12C/13C of 68 for high-mass star-forming regions. This result also affects the 14N/15N ratio: a value of 330 obtained with the double-isotope method is predicted to vary in the range 260–630, up to 1150, depending on the physical conditions. Finally, we studied the 12C/13C ratios of nitriles by varying the cosmic-ray ionisation rate, ζ: the 12C/13C ratios increase with ζ because of secondary photons and cosmic-ray reactions.
Key words: astrochemistry / methods: numerical / ISM: molecules / molecular processes
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.