Issue |
A&A
Volume 640, August 2020
|
|
---|---|---|
Article Number | A122 | |
Number of page(s) | 7 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202037981 | |
Published online | 26 August 2020 |
Self-scattering in protoplanetary disks with dust settling
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel,
Leibnizstr. 15,
24118
Kiel, Germany
e-mail: rbrunngraeber@astrophysik.uni-kiel.de
Received:
19
March
2020
Accepted:
28
June
2020
Scattering of re-emitted flux is considered to be at least partially responsible for the observed polarisation in the (sub-)millimetre wavelength range of several protoplanetary disks. Although the degree of polarisation produced by scattering is highly dependent on the dust model, early studies investigating this mechanism relied on the assumption of single grain sizes and simple density distribution of the dust. However, in the dense inner regions where this mechanism is usually most efficient, the existence of dust grains with sizes ranging from nanometres to millimetres has been confirmed. Additionally, the presence of gas forces larger grains to migrate vertically towards the disk midplane, introducing a dust segregation in the vertical direction. Using polarisation radiative transfer simulations, we analyse the dependence of the resulting scattered light polarisation at 350 μm, 850 μm, 1.3 mm, and 2 mm on various parameters describing protoplanetary disks, including the effect of dust grain settling. We find that the different disk parameters change the degree of polarisation mostly by affecting the anisotropy of the radiation field, the optical depth, or both. It is therefore very challenging to deduce certain disk parameter values directly from polarisation measurements alone. However, assuming a high dust albedo, it is possible to trace the transition from optically thick to optically thin disk regions. The degree of polarisation in most of the considered disk configurations is lower than what is found observationally, implying the necessity to revisit models that describe the dust properties and disk structure.
Key words: radiative transfer / protoplanetary disks / polarization / radiation mechanisms: thermal / scattering
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.