Issue |
A&A
Volume 640, August 2020
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 12 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201937004 | |
Published online | 13 August 2020 |
Seeds of Life in Space (SOLIS)
X. Interstellar complex organic molecules in the NGC 1333 IRAS 4A outflows★
1
Univ. Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
e-mail: marta.desimone@univ-grenoble-alpes.fr
2
INAF,
Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5,
50125
Firenze,
Italy
3
Institut de Radioastronomie Millimétrique (IRAM),
300 rue de la Piscine,
38400
Saint-Martin d’Hères,
France
4
Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia,
Perugia
06123,
Italy
5
Max-Planck-Institut für extraterrestrische Physik (MPE),
Giessenbachstrasse 1,
85748
Garching,
Germany
Received:
28
October
2019
Accepted:
12
June
2020
Context. The interstellar complex organic molecules (iCOMs) are C-bearing molecules containing at least six atoms; two main proposals for their formation are suggested: a direct formation in the icy mantle of the dust grains and formation through the reaction in gas phase of released grain mantle species. The shocked gas along outflows driven by low-mass protostars is a unique environment to study how the iCOMs can be formed as the composition of the dust mantles is sputtered into the gas phase.
Aims. The chemical richness in shocked material associated with low-mass protostellar outflows has been so far studied in the prototypical L1157 blue-shifted outflow to investigate the iCOM formation routes. To understand whether the case of L1157-B1 is unique, we imaged and studied the IRAS 4A outflows in the NGC 1333 star forming region.
Methods. We used the NOrthern Extended Millimeter Array interferometer as part of the IRAM Seeds Of Life in Space (SOLIS) Large Program to image the large-scale bipolar outflows driven by the IRAS 4A system in the 3 mm band, and we compared the observation with the GRAINOBLE+ astrochemical model.
Results. We report the first detection, in the IRAS 4A outflows, of several iCOMs: six lines of methanol (CH3OH), eight of acetaldehyde (CH3CHO), one of formamide (NH2CHO), and four of dimethyl ether (CH3OCH3), all sampling upper excitation energy up to ~30 K. We found a significant chemical differentiation between the southeast outflow driven by the IRAS 4A1 protostar, showing a richer molecular content, and the north–southwest one driven by the IRAS 4A2 hot corino. The CH3OH/CH3CHO abundance ratio is lower by a factor of ~4 in the former; furthermore, the ratio in the IRAS 4A outflows is lower by a factor of ~10 with respect to the values found in different hot corinos.
Conclusions. After L1157-B1, the IRAS 4A outflow is now the second outflow to show an evident chemical complexity. Given that CH3OH is a grain surface species, the astrochemical gas-phase model run with GRAINOBLE+ reproduced our observation assuming that acetaldehyde is formed mainly through the gas-phase reaction of the ethyl radical (CH3CH2) and atomic oxygen. Furthermore, the chemical differentiation between the two outflows suggests that the IRAS 4A1 outflow is likely younger than that of the IRAS 4A2. Further investigation is needed to constrain the age of the outflow. In addition, observation of even younger shocks are necessary. In order to provide strong constraints on the CH3CHO formation mechanisms it would be interesting to observe CH3CH2, but given that its frequencies are not known, future spectroscopic studies on this species are needed.
Key words: astrochemistry / instrumentation: interferometers / stars: formation / ISM: jets and outflows / ISM: molecules / ISM: individual objects: NGC 1333 IRAS 4A
The reduced images are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A75
© M. De Simone et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.