Issue |
A&A
Volume 638, June 2020
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 8 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/202037816 | |
Published online | 08 June 2020 |
Living on the edge: Rossby wave instability and HFQPOs in black hole binaries
1
Université de Paris, CNRS, Astroparticule et Cosmologie, 75013 Paris, France
e-mail: varniere@apc.univ-paris7.fr
2
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
3
Observatoire de Paris/LESIA, 5 Place Jules Janssen, 92195 Meudon Cedex, France
Received:
25
February
2020
Accepted:
14
April
2020
Context. The Rossby wave instability (RWI) has been proposed to explain the origin of the high-frequency quasi-periodic oscillations observed in the X-ray emission of astrophysical systems harbouring black holes. Recent numerical computations have proven that the RWI does exist in a general relativistic context and that its presence is associated with a time-variable X-ray emission from the disc.
Aims. Using our new Numerical Observatory of Violent Accreting system, NOVAs, we explore the way the RWI impacts an accretion disc orbiting a spinning black hole under realistic astrophysical conditions. Our aim is to study the impact of the presence of the RWI in the very inner part of the accretion disc on known observables and explore some possibly new ones.
Methods. We present the first full general relativistic hydrodynamical simulations of the RWI occurring at the last stable orbit of an accretion disc orbiting around a Kerr black-hole. Those simulations, coupled with a full general relativistic ray-tracing, have allowed us to directly compare our simulations with the observables we obtained from the X-ray emission of the disc.
Results. Our study shows, for the first time, that the RWI naturally arises near the inner edge of an accretion disc whenever it gets close to its last stable orbit, as predicted analytically. From there, we show that not only does the RWI create a visible timing feature but it also impacts the energy spectrum of the source, which exhibits a high energy extension due to the presence of hot vortices generated by the RWI in the disc. Our study also shows that systems with the RWI present at the inner edge of the disc only exhibit similar behavior to systems in which HFQPOs have been detected.
Key words: X-rays: binaries / accretion / accretion disks
© P. Varniere et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.