Issue |
A&A
Volume 633, January 2020
|
|
---|---|---|
Article Number | A93 | |
Number of page(s) | 20 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201936804 | |
Published online | 17 January 2020 |
Formation of moon systems around giant planets
Capture and ablation of planetesimals as foundation for a pebble accretion scenario
Department of Astronomy and Theoretical Physics, Lund Observatory, Lund University,
Box 43,
22100 Lund,
Sweden
e-mail: thomas.ronnet@astro.lu.se
Received:
28
September
2019
Accepted:
10
December
2019
The four major satellites of Jupiter, known as the Galilean moons, and Saturn’s most massive satellite, Titan, are believed to have formed in a predominantly gaseous circum-planetary disk during the last stages of formation of their parent planet. Pebbles from the protoplanetary disk are blocked from flowing into the circumplanetary disk by the positive pressure gradient at the outer edge of the planetary gap, so the gas drag assisted capture of planetesimals should be the main contributor to the delivery of solids onto circum-planetary disks. However, a consistent framework for the subsequent accretion of the moons remains to be built. Here, we use numerical integrations to show that most planetesimals that are captured within a circum-planetary disk are strongly ablated due to the frictional heating they experience, thus supplying the disk with small dust grains, whereas only a small fraction “survives” their capture. We then constructed a simple model of a circum-planetary disk supplied by ablation, where the flux of solids through the disk is at equilibrium with the ablation supply rate, and we investigate the formation of moons in such disks. We show that the growth of satellites is mainly driven by accretion of the pebbles that coagulate from the ablated material. The pebble-accreting protosatellites rapidly migrate inward and pile up in resonant chains at the inner edge of the circum-planetary disk. We propose that dynamical instabilities in these resonant chains are at the origin of the different architectures of Jupiter’s and Saturn’s moon systems. The assembly of moon systems through pebble accretion can therefore be seen as a down-scaled manifestation of the same process that forms systems of super-Earths and terrestrial-mass planets around solar-type stars and M-dwarfs.
Key words: planets and satellites: individual: Galilean moons / planets and satellites: individual: Titan / planets and satellites: gaseous planets / planets and satellites: formation
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.