Issue |
A&A
Volume 631, November 2019
|
|
---|---|---|
Article Number | A111 | |
Number of page(s) | 13 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201936477 | |
Published online | 05 November 2019 |
Does magnetic field impact tidal dynamics inside the convective zone of low-mass stars along their evolution?
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
e-mail: aurelie.astoul@cea.fr
2
IRAP, Observatoire Midi-Pyrénées, Université de Toulouse, 14 avenue Edouard Belin, 31400 Toulouse, France
3
Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
4
Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland
Received:
7
August
2019
Accepted:
21
September
2019
Context. The dissipation of the kinetic energy of wave-like tidal flows within the convective envelope of low-mass stars is one of the key physical mechanisms that shapes the orbital and rotational dynamics of short-period exoplanetary systems. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts large-scale tidal flows and the excitation, propagation and dissipation of tidal waves still remains open.
Aims. Our goal is to investigate the impact of stellar magnetism on the forcing of tidal waves, and their propagation and dissipation in the convective envelope of low-mass stars as they evolve.
Methods. We have estimated the amplitude of the magnetic contribution to the forcing and dissipation of tidally induced magneto-inertial waves throughout the structural and rotational evolution of low-mass stars (from M to F-type). For this purpose, we have used detailed grids of rotating stellar models computed with the stellar evolution code STAREVOL. The amplitude of dynamo-generated magnetic fields is estimated via physical scaling laws at the base and the top of the convective envelope.
Results. We find that the large-scale magnetic field of the star has little influence on the excitation of tidal waves in the case of nearly-circular orbits and coplanar hot-Jupiter planetary systems, but that it has a major impact on the way waves are dissipated. Our results therefore indicate that a full magneto-hydrodynamical treatment of the propagation and dissipation of tidal waves is needed to properly assess the impact of star-planet tidal interactions throughout the evolutionary history of low-mass stars hosting short-period massive planets.
Key words: magnetohydrodynamics (MHD) / waves / planet-star interactions / stars: evolution / stars: magnetic field / stars: rotation
© A. Astoul et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.