Issue |
A&A
Volume 631, November 2019
|
|
---|---|---|
Article Number | L13 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201936373 | |
Published online | 20 November 2019 |
Letter to the Editor
Evidence for anisotropy of cosmic acceleration⋆
1
CNRS, UPMC, Institut d’Astrophysique de Paris, 98 bis Bld Arago, Paris, France
2
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
3
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
e-mail: s.sarkar@physics.ox.ac.uk
Received:
22
July
2019
Accepted:
18
October
2019
Observations reveal a “bulk flow” in the local Universe which is faster and extends to much larger scales than are expected around a typical observer in the standard ΛCDM cosmology. This is expected to result in a scale-dependent dipolar modulation of the acceleration of the expansion rate inferred from observations of objects within the bulk flow. From a maximum-likelihood analysis of the Joint Light-curve Analysis catalogue of Type Ia supernovae, we find that the deceleration parameter, in addition to a small monopole, indeed has a much bigger dipole component aligned with the cosmic microwave background dipole, which falls exponentially with redshift z: q0 = qm + qd.n̂ exp(-z/S). The best fit to data yields qd = −8.03 and S = 0.0262 (⇒d ∼ 100 Mpc), rejecting isotropy (qd = 0) with 3.9σ statistical significance, while qm = −0.157 and consistent with no acceleration (qm = 0) at 1.4σ. Thus the cosmic acceleration deduced from supernovae may be an artefact of our being non-Copernican observers, rather than evidence for a dominant component of “dark energy” in the Universe.
Key words: cosmology: observations / dark energy / large-scale structure of Universe
The code used here is available at: https://github.com/rameez3333/Dipole_JLA
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.