Issue |
A&A
Volume 631, November 2019
|
|
---|---|---|
Article Number | A143 | |
Number of page(s) | 6 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201936282 | |
Published online | 07 November 2019 |
Minimization of non-common path aberrations at the Palomar telescope using a self-coherent camera
1
Lesia, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, Univ. Paris Diderot, UPMC Univ. Paris 06, Sorbonne Paris Cité, 5 place Jules Janssen, 92190 Meudon, France
e-mail: raphael.galicher@obspm.fr
2
Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
3
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Received:
10
July
2019
Accepted:
16
September
2019
Context. The two main advantages of exoplanet imaging are the discovery of objects in the outer part of stellar systems, which constrains the models of planet formation, and its ability to spectrally characterize the planets to study their atmospheres. It is, however, challenging because exoplanets are up to 1010 times fainter than their stars and are separated by a fraction of an arcsecond. Current instruments like SPHERE-VLT or GPI-Gemini detect young and massive planets only because of non-common path aberrations (NCPA) that are not corrected by the adaptive optics system. To probe fainter exoplanets a new instruments capable of minimizing the NCPA is needed. One solution is the self-coherent camera (SCC) focal plane wavefront sensor which is able to attenuate the starlight by factors of up to several 108 in the laboratory in space-like conditions.
Aims. In this paper, we demonstrate the SCC on the sky for the first time.
Methods. We installed an SCC on the stellar double coronagraph instrument at the Hale telescope. We minimize the NCPA that limited the vortex coronagraph performance. We then compared this procedure to the standard procedure used at Palomar.
Results. On internal sources, we demonstrated that the SCC improves the coronagraphic detection limit by a factor of 4–20 between 1.5 and 5 λ/D. Using this SCC calibration, the on-sky contrast is improved by a factor of 5 between 2 and 4 λ/D. These results prove the ability of the SCC to be implemented in an existing instrument.
Conclusions. This paper highlights two interests of the self-coherent camera. First, the SCC can minimize the speckle intensity in the field of view, especially the ones that are very close to the star where many exoplanets are to be discovered. Then the SCC has a 100% efficiency with science time as each image can be used for both science and NCPA minimization.
Key words: instrumentation: adaptive optics / instrumentation: high angular resolution / techniques: high angular resolution
© R. Galicher et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.