Issue |
A&A
Volume 629, September 2019
|
|
---|---|---|
Article Number | A71 | |
Number of page(s) | 19 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201936093 | |
Published online | 06 September 2019 |
Spectral and orbital survey of medium-sized meteoroids★
1
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava,
Slovakia
e-mail: matlovic@fmph.uniba.sk
2
ESTEC/ESA,
Keplerlaan 1,
2201 AZ Noordwijk, The Netherlands
Received:
13
June
2019
Accepted:
19
July
2019
Aims. We investigate the spectra, material properties, and orbital distribution of millimeter- to decimeter-sized meteoroids. Our study aims to distinguish the characteristics of populations of differently sized meteoroids and reveal the heterogeneity of identified meteoroid streams. We verify the surprisingly large ratio of pure iron meteoroids on asteroidal orbits detected among mm-sized bodies.
Methods. Emission spectra and multi-station meteor trajectories were collected within the AMOS network observations. The sample is based on 202 meteors of −1 to −14 magnitude, corresponding to meteoroids of mm to dm sizes. Meteoroid composition is studied by spectral classification based on relative intensity ratios of Na, Mg, and Fe and corresponding monochromatic light curves. Heliocentric orbits, trajectory parameters, and material strengths inferred from empirical KB and PE parameters were determined for 146 meteoroids.
Results. An overall increase of Na content compared to the population of mm-sized meteoroids was detected, reflecting weaker effects of space weathering processes on larger meteoroids. The preservation of volatiles in larger meteoroids is directly observed. We report a very low ratio of pure iron meteoroids and the discovery of a new spectral group of Fe-rich meteors. The majority of meteoroids on asteroidal orbits were found to be chondritic. Thermal processes causing Na depletion and physical processes resulting in Na-rich spectra are described and linked to characteristically increased material strengths. Numerous major and minor shower meteors were identified in our sample, revealing various degrees of heterogeneity within Halley-type, ecliptical, and sungrazing meteoroid streams. Our results imply a scattered composition of the fragments of comet 2P/Encke and 109P/Swift-Tuttle. The largest disparities were detected within α-Capricornids of the inactive comet 169P/NEAT and δ-Aquarids of the sungrazing 96P/Machholz. We also find a spectral similarity between κ-Cygnids and Taurids, which could imply a similar composition of the parent objects of the two streams.
Key words: meteorites, meteors, meteoroids / minor planets, asteroids: general / comets: general / techniques: spectroscopic
Tables 5 and 6 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/629/A71
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.