Issue |
A&A
Volume 628, August 2019
|
|
---|---|---|
Article Number | A86 | |
Number of page(s) | 16 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201935984 | |
Published online | 13 August 2019 |
The Most Massive galaxy Clusters (M2C) across cosmic time: link between radial total mass distribution and dynamical state
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
e-mail: iacopo.bartalucci@cea.fr
2
Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
Received:
29
May
2019
Accepted:
3
July
2019
We study the dynamical state and the integrated total mass profiles of 75 massive (M500 > 5 × 1014 M⊙) Sunyaev–Zeldovich(SZ)-selected clusters at 0.08 < z < 1.1. The sample is built from the Planck catalogue, with the addition of four SPT clusters at z > 0.9. Using XMM-Newton imaging observations, we characterise the dynamical state with the centroid shift ⟨w⟩, the concentration CSB, and their combination, M, which simultaneously probes the core and the large-scale gas morphology. Using spatially resolved spectroscopy and assuming hydrostatic equilibrium, we derive the total integrated mass profiles. The mass profile shape is quantified by the sparsity, that is the ratio of M500 to M2500, the masses at density contrasts of 500 and 2500, respectively. We study the correlations between the various parameters and their dependence on redshift. We confirm that SZ-selected samples, thought to most accurately reflect the underlying cluster population, are dominated by disturbed and non-cool core objects at all redshifts. There is no significant evolution or mass dependence of either the cool core fraction or the centroid shift parameter. The M parameter evolves slightly with z, having a correlation coefficient of ρ = −0.2 ± 0.1 and a null hypothesis p-value of 0.01. In the high-mass regime considered here, the sparsity evolves minimally with redshift, increasing by 10% between z < 0.2 and z > 0.55, an effect that is significant at less than 2σ. In contrast, the dependence of the sparsity on dynamical state is much stronger, increasing by a factor of ∼60% from the one third most relaxed to the one third most disturbed objects, an effect that is significant at more than 3σ. This is the first observational evidence that the shape of the integrated total mass profile in massive clusters is principally governed by the dynamical state and is only mildly dependent on redshift. We discuss the consequences for the comparison between observations and theoretical predictions.
Key words: dark matter / galaxies: clusters: intracluster medium / X-rays: galaxies: clusters
© I. Bartalucci et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.