Issue |
A&A
Volume 626, June 2019
|
|
---|---|---|
Article Number | A56 | |
Number of page(s) | 9 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201935553 | |
Published online | 12 June 2019 |
Peak star formation efficiency and no missing baryons in massive spirals
1
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
2
Université de Strasbourg, CNRS UMR 7550, Observatoire astronomique de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
e-mail: lorenzo.posti@astro.unistra.fr
3
ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
Received:
26
March
2019
Accepted:
30
April
2019
It is commonly believed that galaxies use, throughout Hubble time, a very small fraction of the baryons associated with their dark matter halos to form stars. This so-called low star formation efficiency f⋆ ≡ M⋆/fbMhalo, where fb ≡ Ωb/Ωc is the cosmological baryon fraction, is expected to reach its peak at nearly L* (at efficiency ≈20%) and decline steeply at lower and higher masses. We have tested this using a sample of nearby star-forming galaxies, from dwarfs (M⋆ ≃ 107 M⊙) to high-mass spirals (M⋆ ≃ 1011 M⊙) with HI rotation curves and 3.6 μm photometry. We fit the observed rotation curves with a Bayesian approach by varying three parameters, stellar mass-to-light ratio Υ⋆, halo concentration c, and mass Mhalo. We found two surprising results: (1) the star formation efficiency is a monotonically increasing function of M⋆ with no sign of a decline at high masses, and (2) the most massive spirals (M⋆ ≃ 1−3 × 1011 M⊙) have f⋆ ≈ 0.3−1, i.e. they have turned nearly all the baryons associated with their halos into stars. These results imply that the most efficient galaxies at forming stars are massive spirals (not L* galaxies); they reach nearly 100% efficiency, and thus once both their cold and hot gas is considered in the baryon budget, they have virtually no missing baryons. Moreover, there is no evidence of mass quenching of the star formation occurring in galaxies up to halo masses of a few × 1012 M⊙.
Key words: galaxies: kinematics and dynamics / galaxies: spiral / galaxies: structure / galaxies: formation
© L. Posti et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.