Issue |
A&A
Volume 626, June 2019
|
|
---|---|---|
Article Number | A36 | |
Number of page(s) | 14 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201834100 | |
Published online | 10 June 2019 |
ALMA reveals the magnetic field evolution in the high-mass star forming complex G9.62+0.19★
1
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
Observatorievägen 90,
43992
Onsala,
Sweden
e-mail: daria.dallolio@chalmers.se
2
Max-Planck-Institut für extraterrestrische Physik,
Giessenbachstr. 1,
85748
Garching,
Germany
3
Max-Planck-Institute for Astronomy,
Königstuhl 17,
69117
Heidelberg,
Germany
4
Institut de Ciències de l’Espai (ICE, CSIC),
Can Magrans, s/n,
08193
Cerdanyola del Vallès,
Spain
5
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona,
Spain
6
INAF – Osservatorio Astronomico di Cagliari,
Via della Scienza 5,
09047
Selargius,
Italy
7
Joint Institute for VLBI ERIC,
Oude Hoogeveensedijk 4,
7991 PD
Dwingeloo,
The Netherlands
8
Sterrewacht Leiden, Leiden University,
PO Box 9513,
2300 RA
Leiden,
The Netherlands
Received:
17
August
2018
Accepted:
29
April
2019
Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are as yet largely unexplored. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages.
Aims. We seek to investigate the magnetic field properties at the initial stages of massive star formation. We aim to determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19 to investigate its relation to the evolutionary sequence of the cores.
Methods. We made use of Atacama Large Millimeter Array (ALMA) observations in full polarisation mode at 1 mm wavelength (Band 7) and we analysed the polarised dust emission. We estimated the magnetic field strength via the Davis–Chandrasekhar–Fermi and structure function methods.
Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions: two in the northern field and four in the southern field. Moreover the magnetic field is orientated along the filament and appears perpendicular to the direction of the outflows. The polarisation vectors present ordered patterns and the cores showing polarised emission are less fragmented. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a stronger magnetic field than the more evolved hot core. An average magnetic field strength of the order of 11 mG was derived, from which we obtain a low turbulent-to-magnetic energy ratio, indicating that turbulence does not significantly contribute to the stability of the clump. We report a detection of linear polarisation from thermal line emission, probably from methanol or carbon dioxide, and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, column density, and mass for some of the cores.
Conclusions. The high magnetic field strength and smooth polarised emission indicate that the magnetic field could play an important role in the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. One core shows a very peculiar pattern in the polarisation vectors, which can indicate a compressed magnetic field. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines, and masers is pointing in the same direction and has consistent strength.
Key words: stars: formation / ISM: magnetic fields / magnetic fields / polarization / stars: massive
A copy of the reduced images is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/626/A36
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.