Issue |
A&A
Volume 472, Number 2, September III 2007
|
|
---|---|---|
Page(s) | 519 - 535 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20077422 | |
Published online | 18 June 2007 |
The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations *,**
1
CEA/DSM/DAPNIA, Service d'Astrophysique, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France e-mail: pandre@cea.fr
2
Laboratoire AIM, Unité Mixte de Recherche CEA/DSM – CNRS – Université Paris Diderot, CE Saclay, France
3
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
4
Physics & Astronomy Department, University of Manchester, PO Box 88, Manchester M60 1QD, UK
Received:
6
March
2007
Accepted:
7
June
2007
Context.The earliest phases of clustered star formation and the origin of the stellar initial mass function (IMF) are currently much debated. In one school of thought the IMF of embedded clusters is entirely determined by turbulent fragmentation at the prestellar stage of star formation, while in a major alternative view it results from dynamical interactions and competitive accretion at the protostellar stage.
Aims.In an effort to discriminate between these two pictures for the origin of the IMF, we investigated the internal and relative motions of starless condensations and protostars previously detected by us in the dust continuum at 1.2 mm in the L1688 protocluster of the Ophiuchus molecular cloud complex. The starless condensations have a mass spectrum resembling the IMF and are therefore likely representative of the initial stages of star formation in the protocluster.
Methods.We carried out detailed molecular line observations, including some N2H+(1-0) mapping, of the Ophiuchus protocluster condensations using the IRAM 30 m telescope.
Results.We measured subsonic or at most transonic levels of internal turbulence within the condensations, implying virial masses
which generally agree within a factor of ~2 with the masses derived from the 1.2 mm dust continuum.
This supports the notion that most
of the L1688 starless condensations are gravitationally bound and prestellar in nature.
We detected the classical spectroscopic signature of infall motions in CS(2–1), CS(3–2), H2CO(),
and/or HCO+(3–2) toward six condensations, and obtained tentative infall signatures toward 10 other condensations.
In addition, we measured a global one-dimensional velocity dispersion of less than 0.4 km s-1 (or twice
the sound speed) between condensations. The small relative velocity dispersion implies that, in general, the
condensations do not have time to interact with one another before evolving into pre-main sequence
objects.
Conclusions.Our observations support the view that the IMF is partly determined by cloud fragmentation at the prestellar stage. Competitive accretion is unlikely to be the dominant mechanism at the protostellar stage in the Ophiuchus protocluster, but it may possibly govern the growth of starless, self-gravitating condensations initially produced by gravoturbulent fragmentation toward an IMF, Salpeter-like mass spectrum.
Key words: stars: formation / stars: circumstellar matter / ISM: clouds / ISM: structure / ISM : kinematics and dynamics / ISM: molecules
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.