Issue |
A&A
Volume 625, May 2019
|
|
---|---|---|
Article Number | A133 | |
Number of page(s) | 6 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201834902 | |
Published online | 28 May 2019 |
Spectroscopic and dynamical properties of comet C/2018 F4, likely a true average former member of the Oort cloud★
1
Instituto de Astrofísica de Canarias (IAC),
C/ Vía Láctea s/n,
38205
La Laguna,
Tenerife,
Spain
e-mail: jlicandr@iac.es
2
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna,
Tenerife,
Spain
3
Universidad Complutense de Madrid, Ciudad Universitaria,
28040
Madrid,
Spain
4
AEGORA Research Group, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria,
28040
Madrid,
Spain
5
GRANTECAN, Cuesta de San José s/n,
38712
Breña Baja,
La Palma, Spain
Received:
17
December
2018
Accepted:
15
March
2019
Context. The population of comets hosted by the Oort cloud is heterogeneous. Most studies in this area have focused on highly active objects, those with small perihelion distances or examples of objects with peculiar physical properties and/or unusual chemical compositions. This may have produced a biased sample of Oort cloud comets in which the most common objects may be rare, particularly those with perihelia well beyond the orbit of the Earth. Within this context, the known Oort cloud comets may not be representative of the full sample meaning that our current knowledge of the appearance of the average Oort cloud comet may not be accurate. Comet C/2018 F4 (PANSTARRS) is an object of interest in this regard.
Aims. Here, we study the spectral properties in the visible region and the cometary activity of C/2018 F4, and we also explore its orbital evolution with the aim of understanding its origin within the context of known minor bodies moving along nearly parabolic or hyperbolic paths.
Methods. We present observations obtained with the 10.4 m Gran Telescopio Canarias (GTC) that we use to derive the spectral class and visible slope of C/2018 F4 as well as to characterise its level of cometary activity. Direct N-body simulations are carried out to explore its orbital evolution.
Results. The absolute magnitude of C/2018 F4 is Hr > 13.62 ± 0.04 which puts a strong limit on its diameter, D < 10.4 km, assuming a pV = 0.04 cometary-like value of the albedo. The object presents a conspicuous coma, with a level of activity comparable to those of other comets observed at similar heliocentric distances. Comet C/2018 F4 has a visible spectrum consistent with that of an X-type asteroid, and has a spectral slope S′ = 4.0 ± 1.0%/1000 Å and no evidence of hydration. The spectrum matches those of well-studied primitive asteroids and comets. The analysis of its dynamical evolution prior to discovery suggests that C/2018 F4 is not of extrasolar origin.
Conclusions. Although the present-day heliocentric orbit of C/2018 F4 is slightly hyperbolic, both its observational properties and past orbital evolution are consistent with those of a typical dynamically old comet with an origin in the Oort cloud.
Key words: comets: individual: C/2018 F4 / comets: general / Oort cloud / techniques: spectroscopic / techniques: photometric / methods: numerical
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.