Issue |
A&A
Volume 647, March 2021
|
|
---|---|---|
Article Number | A71 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202039737 | |
Published online | 10 March 2021 |
Small Solar System objects on highly inclined orbits
Surface colours and lifetimes
1
V. N. Karazin Kharkiv National University, 4 Svobody Sq.,
Kharkiv
61022,
Ukraine
e-mail: hromakina@astron.kharkov.ua
2
Crimean Astrophysical Observatory,
Nauchny, Crimea
3
Astronomical Institute of the Slovak Academy of Sciences,
05960
Tatranská Lomnica,
Slovak Republic
4
Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotnoho Str.,
03143
Kyiv, Ukraine
5
Taras Shevchenko National University of Kyiv, Astronomical Observatory,
Kyiv, Ukraine
6
ICAMER Observatory of NASU, 27 Zabolotnoho Str.,
Kyiv
03143, Ukraine
7
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
8
Keldysh Institute of Applied Mathematics, RAS, Miusskaya Sq. 4,
Moscow
125047, Russia
Received:
21
October
2020
Accepted:
21
December
2020
Context. Less than one percent of the discovered small Solar System objects have highly inclined orbits (i > 60°), and revolve around the Sun on near-polar or retrograde orbits. The origin and evolutionary history of these objects are not yet clear.
Aims. In this work we study the surface properties and orbital dynamics of selected high-inclination objects.
Methods. BVRI photometric observations were performed in 2019–2020 using the 2.0 m telescope at the Terskol Observatory and the 2.6 m telescope at the Crimean Astrophysical Observatory. Additionally, we searched for high-inclination objects in the Sloan Digital Sky Survey and Pan-STARRS. The dynamics of the selected objects was studied using numerical simulations.
Results. We obtained new photometric observations of six high-inclination objects (468861) 2013 LU28, (517717) 2015 KZ120, 2020 EP, A/2019 U5 (A/PanSTARRS), C/2018 DO4 (Lemmon), and C/2019 O3 (Palomar). All of the objects have similar B−V, V −R, R−I colours, which are close to those of moderately red TNOs and grey Centaurs. The photometric data that were extracted from the all-sky surveys also correspond to moderately red surfaces of high-inclination objects. No signs of ultra-red material on the surface of high-inclination asteroids were found, which supports the results of previous works. The comet C/2018 DO4 (Lemmon) revealed some complex morphology with structures that could be associated with particles that were ejected from the cometary nucleus. Its value of the parameter Afρ is around 100 cm for the aperture size of 6000 km. The value of Afρ for the hyperbolic comet C/2019 O3 (Palomar) is much larger, and is in the range from 2000 to 3700 cm for the aperture sizes from 25 000 to 60 000 km. For objects 2013 LU28, 2015 KZ120, and 2020 EP we estimated future and past lifetimes on their orbits. It appears that the orbits of considered objects are strongly chaotic, and with the available accuracy of the orbital elements no reliable predictions can be made about their distant past or future. The lifetimes of high-inclination objects turned out to be highly non-sensitive to the precision of the orbital elements, and to the Yarkovsky orbital drift.
Key words: minor planets, asteroids: general / comets: general / Kuiper belt: general / Oort Cloud / techniques: photometric / surveys
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.