Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A83 | |
Number of page(s) | 16 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201834810 | |
Published online | 16 April 2019 |
Surface magnetic activity of the fast-rotating G5 giant IN Comae, central star of the faint planetary nebula LoTr 5⋆
1
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege út 15-17, 1121 Budapest, Hungary
e-mail: kovari.zsolt@csfk.mta.hu
2
Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
3
Eötvös University, Department of Astronomy, Pf. 32, 1518 Budapest, Hungary
Received:
10
December
2018
Accepted:
24
February
2019
Context. On the asymptotic giant branch, low to intermediate mass stars blow away their outer envelopes, forming planetary nebulae. Dynamic interaction between the planetary nebula and its central progenitor is poorly understood. The interaction is even more complex when the central object is a binary star with a magnetically active component, as is the case for the target in this paper.
Aims. We aim to quantify the stellar surface activity of the cool binary component of IN Com and aim to explain its origin. In general, we need a better understanding of how central binary stars in planetary nebulae evolve and how this evolution could develop such magnetically active stars as IN Com.
Methods. We present a time series of 13 consecutive Doppler images covering six months in 2017 that we used to measure the surface differential rotation with a cross-correlation method. Hitherto unpublished high-precision photometric data from 1989 to 2017 are presented. We applied Fourier-transformation-based frequency analysis to both photometry and spectra. Very high resolution (R ≈ 200 000) spectra were used to update IN Com’s astrophysical parameters by means of spectral synthesis.
Results. Our time-series Doppler images show cool and warm spots coexisting with an average surface temperature contrast of −1000 K and +300 K with respect to the effective temperature. Approximately 8% of the stellar surface is covered with cool spots and ∼3% with warm spots. A consistent cool polar spot is seen in all images. The average lifetime of the cool spots is not much more than a few stellar rotations (one month), while the warm spots appear to live longer (three months) and are mostly confined to high latitudes. We found anti-solar surface differential rotation with a shear coefficient of α = −0.026 ± 0.005 suggesting an equatorial rotation period of 5.973 ± 0.008 d. We reconfirm the 5.9 day rotation period of the cool star from photometry, radial velocities, and Hα line-profile variations. A long-term V-brightness variation with a likely period of 7.2 yr is also found. It appears in phase with the orbital radial velocity of the binary system in the sense that it is brightest at highest velocity and faintest at lowest velocity, that is, at the two phases of quadrature. We redetermine [Ba/Fe], [Y/Fe], and [Sr/Fe] ratios and confirm the overabundance of these s-process elements in the atmosphere of IN Com.
Key words: stars: activity / stars: imaging / stars: late-type / stars: individual: IN Com / starspots
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.