Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A51 | |
Number of page(s) | 12 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201834668 | |
Published online | 08 April 2019 |
Relative magnetic field line helicity
1
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92195 Meudon, France
e-mail: kmorait@phys.uoa.gr
2
Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK
3
IRAP, Université de Toulouse, CNRS, CNES, UPS, 31028 Toulouse, France
Received:
16
November
2018
Accepted:
22
February
2019
Context. Magnetic helicity is an important quantity in studies of magnetized plasmas as it provides a measure of the geometrical complexity of the magnetic field in a given volume. A more detailed description of the spatial distribution of magnetic helicity is given by the field line helicity, which expresses the amount of helicity associated to individual field lines rather than in the full analysed volume.
Aims. Magnetic helicity is not a gauge-invariant quantity in general, unless it is computed with respect to a reference field, yielding the so-called relative magnetic helicity. The field line helicity corresponding to the relative magnetic helicity has only been examined under specific conditions so far. This work aims to define the field line helicity corresponding to relative magnetic helicity in the most general way. In addition to its general form, we provide the expression for the relative magnetic field line helicity in a few commonly used gauges, and reproduce known results as a limit of our general formulation.
Methods. By starting from the definition of relative magnetic helicity, we derived the corresponding field line helicity, and we noted the assumptions on which it is based.
Results. We checked that the developed quantity reproduces relative magnetic helicity by using three different numerical simulations. For these cases we also show the morphology of field line helicity in the volume, and on the photospheric plane. As an application to solar situations, we compared the morphology of field line helicity on the photosphere with that of the connectivity-based helicity flux density in two reconstructions of an active region’s magnetic field. We discuss how the derived relative magnetic field line helicity has a wide range of applications, notably in solar physics and magnetic reconnection studies.
Key words: Sun: fundamental parameters / Sun: magnetic fields / magnetohydrodynamics (MHD) / methods: numerical
© K. Moraitis et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.