Issue |
A&A
Volume 623, March 2019
|
|
---|---|---|
Article Number | A155 | |
Number of page(s) | 12 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201834931 | |
Published online | 26 March 2019 |
Theoretical investigation of energy levels and transition data for S II, Cl III, Ar IV⋆
1
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, 10222 Vilnius, Lithuania
e-mail: pavel.rynkun@tfai.vu.lt
2
Group for Materials Science and Applied Mathematics, Malmö University, 20506 Malmö, Sweden
Received:
20
December
2018
Accepted:
28
January
2019
Aims. The aim of this work is to present accurate and extensive results of energy spectra and transition data for the S II, Cl III, and Ar IV ions. These data are useful for understanding and probing physical processes and conditions in various types of astrophysical plasmas.
Methods. The multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods, which are implemented in the general-purpose relativistic atomic structure package GRASP2K, are used in the present work. In the RCI calculations the transverse-photon (Breit) interaction, the vacuum polarization, and the self-energy corrections are included.
Results. Energy spectra are presented comprising the 134, 87, and 103 lowest states in S II, Cl III, and Ar IV, respectively. Energy levels are in very good agreement with NIST database recommended values and associated with smaller uncertainties than energies from other theoretical computations. Electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition data are computed between the above states together with the corresponding lifetimes. Based on internal validation, transition rates for the majority of the stronger transitions are estimated to have uncertainties of less than 3%.
Key words: atomic data
Tables 5–7 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A155
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.