Issue |
A&A
Volume 623, March 2019
|
|
---|---|---|
Article Number | A149 | |
Number of page(s) | 10 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201832673 | |
Published online | 22 March 2019 |
GALEX colours of quasars and intergalactic medium opacity at low redshift
1
Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France
e-mail: jean-michel.deharveng@lam.fr
2
Sirius Environmental, 1478 N.Altadena Dr, Pasadena, CA 901107, USA
Received:
19
January
2018
Accepted:
17
February
2019
Aims. The distribution of neutral hydrogen in the intergalactic medium (IGM) is currently explored at low redshift by means of UV spectroscopy of quasars. We propose here an alternative approach based on UV colours of quasars as observed from GALEX surveys. We built a NUV-selected sample of 9033 quasars with (FUV−NUV) colours. The imprint of HI absorption in the observed colours is suggested qualitatively by their distribution as a function of quasar redshift.
Methods. Because broad band fluxes lack spectral resolution and are sensitive to a large range of HI column densities a Monte Carlo simulation of IGM opacity is required for quantitative analysis. It was performed with absorbers randomly distributed along redshift and column density distributions. The column density distribution was assumed to be a broken power law with index β1 (1015 cm−2 < NHI < 1017.2 cm−2) and β2 (1017.2 cm−2 < NHI < 1019 cm−2). For convenience the redshift distribution is taken proportional to the redshift evolution law of the number density of Lyman limit systems (LLS) per unit redshift as determined by existing spectroscopic surveys. The simulation is run with different assumptions on the spectral index αν of the quasar ionising flux.
Results. The fits between the simulated and observed distribution of colours require an LLS redshift density larger than that derived from spectroscopic counting. This result is robust in spite of difficulties in determining the colour dispersion other than that due to neutral hydrogen absorption. This difference decreases with decreasing αν (softer ionising quasar spectrum) and would vanish only with values of αν which are not supported by existing observations.
Conclusions. We provide arguments to retain αν = −2, a value already extreme with respect to those measured with HST/COS. Further fitting of power law index β1 and β2 leads to a higher density by a factor of 1.7 (β1 = −1.7, β2 = −1.5), possibly 1.5 (β1 = −1.7, β2 = −1.7). Beyond the result in terms of density the analysis of UV colours of quasars reveals a tension between the current description of IGM opacity at low z and the published average ionising spectrum of quasars.
Key words: intergalactic medium / ultraviolet: general / quasars: general
© J.-M. Deharveng et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.