Issue |
A&A
Volume 622, February 2019
|
|
---|---|---|
Article Number | L3 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201834543 | |
Published online | 25 January 2019 |
Letter to the Editor
Wind Roche lobe overflow in high-mass X-ray binaries
A possible mass-transfer mechanism for ultraluminous X-ray sources
1
Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
e-mail: ileyk.elmellah@kuleuven.be
2
KU Leuven, Instituut voor Sterrenkunde, Celestijnenlaan 200D, 3001 Leuven, Belgium
Received:
30
October
2018
Accepted:
30
December
2018
Ultraluminous X-ray sources (ULXs) have such high X-ray luminosities that they were long thought to be accreting intermediate-mass black holes. Yet, some ULXs have been shown to display periodic modulations and coherent pulsations suggestive of a neutron star in orbit around a stellar companion and accreting at super-Eddington rates. In this Letter, we propose that the mass transfer in ULXs could be qualitatively the same as in supergiant X-ray binaries (SgXBs), with a wind from the donor star highly beamed towards the compact object. Since the star does not fill its Roche lobe, this mass transfer mechanism known as “wind Roche lobe overflow” can remain stable even for large donor-star-to-accretor mass ratios. Based on realistic acceleration profiles derived from spectral observations and modeling of the stellar wind, we compute the bulk motion of the wind to evaluate the fraction of the stellar mass outflow entering the region of gravitational predominance of the compact object. The density enhancement towards the accretor leads to mass-transfer rates systematically much larger than the mass-accretion rates derived by the Bondi-Hoyle-Lyttleton formula. We identify orbital and stellar conditions for a SgXBs to transfer mass at rates necessary to reach the ULX luminosity level. These results indicate that Roche-lobe overflow is not the only way to funnel large quantities of material into the Roche lobe of the accretor. With the stellar mass-loss rates and parameters of M101 ULX-1 and NGC 7793 P13, wind Roche-lobe overflow can reproduce mass-transfer rates that qualify an object as an ULX.
Key words: X-rays: binaries / accretion / accretion disks / stars: black holes / supergiants / stars: winds / outflows / stars: neutron
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.