Issue |
A&A
Volume 622, February 2019
|
|
---|---|---|
Article Number | A147 | |
Number of page(s) | 12 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201833784 | |
Published online | 14 February 2019 |
The potential of combining MATISSE and ALMA observations: constraining the structure of the innermost region in protoplanetary discs
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel,
Leibnizstraße 15,
24118 Kiel,
Germany
e-mail: jkobus@astrophysik.uni-kiel.de
Received:
6
July
2018
Accepted:
27
December
2018
Context. In order to study the initial conditions of planet formation, it is crucial to obtain spatially resolved multi-wavelength observations of the innermost region of protoplanetary discs.
Aims. We evaluate the advantage of combining observations with MATISSE/VLTI and ALMA to constrain the radial and vertical structure of the dust in the innermost region of circumstellar discs in nearby star-forming regions.
Methods. Based on a disc model with a parameterized dust density distribution, we apply 3D radiative-transfer simulations to obtain ideal intensity maps. These are used to derive the corresponding wavelength-dependent visibilities we would obtain with MATISSE as well as ALMA maps simulated with CASA.
Results. Within the considered parameter space, we find that constraining the dust density structure in the innermost 5 au around the central star is challenging with MATISSE alone, whereas ALMA observations with reasonable integration times allow us to derive significant constraints on the disc surface density. However, we find that the estimation of the different disc parameters can be considerably improved by combining MATISSE and ALMA observations. For example, combining a 30-min ALMA observation (at 310 GHz with an angular resolution of 0.03′′) for MATISSE observations in the L and M bands (with visibility accuracies of about 3%) allows the radial density slope and the dust surface density profile to be constrained to within Δα = 0.3 and Δ(α − β) = 0.15, respectively. For an accuracy of ~1% even the disc flaring can be constrained to within Δβ = 0.1. To constrain the scale height to within 5 au, M band accuracies of 0.8% are required. While ALMA is sensitive to the number of large dust grains settled to the disc midplane we find that the impact of the surface density distribution of the large grains on the observed quantities is small.
Key words: radiative transfer / techniques: interferometric / protoplanetary disks / stars: variables: T Tauri, Herbig Ae/Be
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.