Issue |
A&A
Volume 621, January 2019
|
|
---|---|---|
Article Number | L8 | |
Number of page(s) | 7 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201834302 | |
Published online | 11 January 2019 |
Letter to the Editor
Post-conjunction detection of β Pictoris b with VLT/SPHERE⋆
1
Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
e-mail: anne-marie.lagrange@univ-grenoble-alpes.fr
2
LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
3
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
4
CRAL, UMR 5574, CNRS, Universit de Lyon, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
5
Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU UMI 3386 and Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
6
INAF – Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, 35122 Padova, Italy
7
ESO Alonso de Córdova 3107, Vitacura, Región Metropolitana, Chile
8
Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
9
Institute for Particle Physics and Astrophysics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
10
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
11
SUPA, Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
12
Department of Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
13
Department of Astronomy, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
14
INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
15
Geneva Observatory, University of Geneva, Chemin des Mailettes 51, 1290 Versoix, Switzerland
16
Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
17
Anton Pannekoek Institute for Astronomy, Science Park 904, 1098 XH Amsterdam, The Netherlands
18
Université Côte d’Azur, OCA, CNRS, Lagrange, France
19
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
20
INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy
21
Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
22
Physikalisches Institut, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
23
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
24
INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
25
ONERA (Office National d’Etudes et de Recherches Aérospatiales), BP 72, 92322 Châtillon, France
26
European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
27
NOVA Optical Infrared Instrumentation Group, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
28
Center for Theoretical Astrophysics and Cosmology, Inst. for Computational Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Received:
21
September
2018
Accepted:
26
October
2018
Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to β Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet’s orbital parameters.
Aims. We aimed at further constraining β Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.
Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta β Pictoris b since first light of the instrument in 2014.
Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected β Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30° in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 ± 0.5 au (1σ), it definitely excludes previously reported possible long orbital periods, and excludes β Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
Key words: planetary systems / stars: individual: HR 2020 / instrumentation: high angular resolution
© ESO 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.