The VLA-COSMOS 3 GHz Large Project: Average radio spectral energy distribution of highly star-forming galaxies⋆
1
Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
e-mail: ktisanic@phy.hr
2
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
3
MPI for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
4
INAF – Osservatorio di Astrofisica e Scienza dello Spazio, Via Gobetti 93/3, 40129 Bologna, Italy
5
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
6
Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
Received:
1
August
2018
Accepted:
22
November
2018
We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z ∼ 4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared–radio correlation provides the basis for the use of radio luminosity as a star-formation tracer. Recent stacking and survival analysis studies find q to be decreasing with increasing redshift. It was pointed out that a possible cause of the redshift trend could be the computation of rest-frame radio luminosity via a single power-law assumption of the star-forming galaxies’ (SFGs) SED. To test this, we constrained the shape of the radio SED of a sample of HSFGs. To achieve a broad rest-frame frequency range, we combined previously published Very Large Array observations of the COSMOS field at 1.4 GHz and 3 GHz with unpublished Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz and 610 MHz by employing survival analysis to account for non-detections in the GMRT maps. We selected a sample of HSFGs in a broad redshift range (z ∈ [0.3, 4], SFR ≥ 100 M⊙ yr−1) and constructed the average radio SED. By fitting a broken power-law, we find that the spectral index changes from α1 = 0.42 ± 0.06 below a rest-frame frequency of 4.3 GHz to α2 = 0.94 ± 0.06 above 4.3 GHz. Our results are in line with previous low-redshift studies of HSFGs ( SFR > 10 M⊙ yr−1) that show the SED of HSFGs to differ from the SED found for normal SFGs ( SFR < 10 M⊙ yr−1). The difference is mainly in a steeper spectrum around 10 GHz, which could indicate a smaller fraction of thermal free–free emission. Finally, we also discuss the impact of applying this broken power-law SED in place of a simple power-law in K-corrections of HSFGs and a typical radio SED for normal SFGs drawn from the literature. We find that the shape of the radio SED is unlikely to be the root cause of the q − z trend in SFGs.
Key words: galaxies: evolution / galaxies: statistics / radio continuum: galaxies / galaxies: star formation
The table of the cross-matched fluxes is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/621/A139
© ESO 2019