Issue |
A&A
Volume 621, January 2019
|
|
---|---|---|
Article Number | A82 | |
Number of page(s) | 8 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201732532 | |
Published online | 11 January 2019 |
AGILE, Fermi, Swift, and GASP/WEBT multi-wavelength observations of the high-redshift blazar 4C +71.07 in outburst⋆
1
INAF, Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, 23807 Merate, LC, Italy
e-mail: stefano.vercellone@inaf.it
2
INAF, Istituto di Astrofisica e Planetologia Spaziale, Via Fosso del Cavaliere 100, 00133 Roma, Italy
3
ASI, Via del Politecnico, 00133 Roma, Italy
4
UAB, Universitat Autonòma de Barcelona, Departament de Física Edifici C, 08193 Bellaterra, Cerdanyola del Vallès, Spain
5
INAF, Osservatorio Astronomico di Torino, Via Osservatorio 20, 10025 Pino Torinese, Italy
6
ASI Space Science Data Center, Via del Politecnico, 00133 Roma, Italy
7
INAF, Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone, Italy
8
INAF, Osservatorio di Astrofisica e Scienza dello Spazio, Via Piero Gobetti 93/3, 40129 Bologna, Italy
9
Dip. di Fisica, Univ. di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy
10
Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L’Aquila, Italy
11
Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain
12
Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
13
Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, 18080 Granada, Spain
14
Pulkovo Observatory, St.-Petersburg, Russia
15
Max-Planck-Insitut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
16
Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72, Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
17
Crimean Astrophysical Observatory RAS, P/O Nauchny 298409, Russia
18
Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
19
INAF, Istituto di Radioastronomia, Via Piero Gobetti 93/2, 40129 Bologna, Italy
20
Dip. di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
21
Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetskij prosp.13, Moscow 119991, Russia
22
Ulugh Beg Astronomical Institute, Maidanak Observatory, Uzbekistan
23
Astron. Inst., St.-Petersburg State Univ., Russia
24
Aalto University Metsähovi Radio Observatory, Metsähovintie 114, 02540 Kylmälä, Finland
25
Aalto University Department of Electronics and Nanoengineering, PO Box 13000, 00076 Aalto, Finland
26
Abastumani Observatory, Mt. Kanobili, 0301 Abastumani, Georgia
27
Engelhardt Astronomical Observatory, Kazan Federal University, Tatarstan, Russia
28
Center for Astrophysics, Guangzhou University, Guangzhou 510006, PR China
29
Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China
30
INFN, Sezione di Pavia, Via Agostino Bassi, 6, 27100 Pavia, Italy
31
School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 Johannesburg, South Africa
32
INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
33
Dipartimento di Fisica, Università degli Studi di Trieste, Via Valerio 2, 34127 Trieste, Italy
34
INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
35
East Windsor RSD, 25a Leshin Lane, Hightstown, NJ 08520, USA
Received:
22
December
2017
Accepted:
9
November
2018
Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), γ-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc.
Aims. 4C +71.07 has been detected in outburst twice by the AGILE γ-ray satellite during the period from the end of October to mid-November 2015, when it reached a γ-ray flux of the order of F(E > 100 MeV)=(1.2 ± 0.3)×10−6 photons cm−2 s−1 and F(E > 100 MeV)=(3.1 ± 0.6)×10−6 photons cm−2 s−1, respectively, allowing us to investigate the properties of the jet and the emission region.
Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and γ-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites.
Results. The spectral energy distribution of the second γ-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 1047 erg s−1.
Conclusions. During the most prominent γ-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future γ-ray satellites such as e-ASTROGAM.
Key words: acceleration of particles / radiation mechanisms: non-thermal / relativistic processes / quasars: supermassive black holes / quasars: individual: 4C +71.07 / gamma rays: galaxies
Partly based on data taken and assembled by the WEBT collaboration and stored in the WEBT archive at the Osservatorio Astrofisico di Torino – INAF (http://www.oato.inaf.it/blazars/webt).
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.