Issue |
A&A
Volume 620, December 2018
|
|
---|---|---|
Article Number | A61 | |
Number of page(s) | 26 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201833625 | |
Published online | 30 November 2018 |
Planck’s dusty GEMS
VI. Multi-J CO excitation and interstellar medium conditions in dusty starburst galaxies at z = 2–4⋆
1 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
e-mail: canameras@dark-cosmology.dk
2 European Southern Observatory, ESO Vitacura, Alonso de Cordova 3107, Vitacura, Casilla, 19001 Santiago, Chile
3 Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay, France
4 Atacama Large Millimeter/submillimeter Array, ALMA Santiago Central Offices, Alonso de Cordova 3107, Vitacura, Casilla, 763-0355 Santiago, Chile
5 Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden
6 Laboratoire AIM, CEA/DSM/IRFU, CNRS, Université Paris-Diderot, Bât. 709, 91191 Gif-sur-Yvette, France
7 Aix-Marseille Université, CNRS, CNES, LAM, Marseille, France
8 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
9 Institut d’Astrophysique de Paris, UPMC Université Paris 06, UMR 7095, 75014 Paris, France
10 Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, 6658 British Columbia, Canada
Received:
12
June
2018
Accepted:
8
October
2018
We present an extensive CO emission-line survey of the Planck’s dusty Gravitationally Enhanced subMillimetre Sources, a small set of 11 strongly lensed dusty star-forming galaxies at z = 2–4 discovered with Planck and Herschel satellites, using EMIR on the IRAM 30-m telescope. We detected a total of 45 CO rotational lines from Jup = 3 to Jup = 11, and up to eight transitions per source, allowing a detailed analysis of the gas excitation and interstellar medium conditions within these extremely bright (μLFIR = 0.5 − 3.0 × 1014L⊙), vigorous starbursts. The peak of the CO spectral-line energy distributions (SLEDs) fall between Jup = 4 and Jup = 7 for nine out of 11 sources, in the same range as other lensed and unlensed submillimeter galaxies (SMGs) and the inner regions of local starbursts. We applied radiative transfer models using the large velocity gradient approach to infer the spatially-averaged molecular gas densities, nH2 ≃ 102.6 − 104.1 cm−3, and kinetic temperatures, Tk ≃ 30–1000 K. In five sources, we find evidence of two distinct gas phases with different properties and model their CO SLED with two excitation components. The warm (70–320 K) and dense gas reservoirs in these galaxies are highly excited, while the cooler (15–60 K) and more extended low-excitation components cover a range of gas densities. In two sources, the latter is associated with diffuse Milky Way-like gas phases of density nH2 ≃ 102.4 − 102.8 cm−3, which provides evidence that a significant fraction of the total gas masses of dusty starburst galaxies can be embedded in cool, low-density reservoirs. The delensed masses of the warm star-forming molecular gas range from 0.6to12 × 1010 M⊙. Finally, we show that the CO line luminosity ratios are consistent with those predicted by models of photon-dominated regions (PDRs) and disfavor scenarios of gas clouds irradiated by intense X-ray fields from active galactic nuclei. By combining CO, [C I] and [C II] line diagnostics, we obtain average PDR gas densities significantly higher than in normal star-forming galaxies at low-redshift, as well as far-ultraviolet radiation fields 102–104 times more intense than in the Milky Way. These spatially-averaged conditions are consistent with those in high-redshift SMGs and in a range of low-redshift environments, from the central regions of ultra-luminous infrared galaxies and bluer starbursts to Galactic giant molecular clouds.
Key words: galaxies: high-redshift / galaxies: evolution / galaxies: star formation / galaxies: ISM / submillimeter: galaxies / ISM: molecules
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.