Issue |
A&A
Volume 620, December 2018
|
|
---|---|---|
Article Number | A177 | |
Number of page(s) | 14 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201833393 | |
Published online | 14 December 2018 |
Forward modelling of brightness variations in Sun-like stars
I. Emergence and surface transport of magnetic flux
1
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen,
Germany
e-mail: isik@mps.mpg.de; solanki@mps.mpg.de
2
Feza Gürsey Center for Physics and Mathematics, Boğaziçi University,
Kuleli 34684,
Istanbul,
Turkey
3
School of Space Research, Kyung Hee University,
Yongin,
Gyeonggi-Do,
446-701,
Republic of Korea
Received:
8
May
2018
Accepted:
15
October
2018
Context. The latitudinal distribution of starspots deviates from the solar pattern with increasing rotation rate. Numerical simulations of magnetic flux emergence and transport can help model the observed stellar activity patterns and the associated brightness variations.
Aims. We set up a composite model for the processes of flux emergence and transport on Sun-like stars to simulate stellar brightness variations for various levels of magnetic activity and rotation rates.
Methods. Assuming that the distribution of magnetic flux at the base of the convection zone follows solar scaling relations, we calculate the emergence latitudes and tilt angles of bipolar regions at the surface for various rotation rates, using thin-flux-tube simulations. Taking these two quantities as input to a surface flux transport (SFT) model, we simulate the diffusive-advective evolution of the radial field at the stellar surface, including effects of active region nesting.
Results. As the rotation rate increases, (1) magnetic flux emerges at higher latitudes and an inactive gap opens around the equator, reaching a half-width of 20° for 8 Ω⊙; and (2) the tilt angles of freshly emerged bipolar regions show stronger variations with latitude. Polar spots can form at 8 Ω⊙ by accumulation of follower-polarity flux from decaying bipolar regions. From 4 Ω⊙ to 8 Ω⊙, the maximum spot coverage changes from 3 to 20%, respectively, compared to 0.4% in the solar model. Nesting of activity can lead to strongly non-axisymmetric spot distributions.
Conclusions. On Sun-like stars rotating at 8 Ω⊙ (Prot ≃ 3 days), polar spots can form, owing to higher levels of flux emergence rate and tilt angles. Defining spots by a threshold field strength yields global spot coverages that are roughly consistent with stellar observations.
Key words: stars: activity / stars: solar-type / starspots / stars: magnetic field / methods: numerical / magnetohydrodynamics (MHD)
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.