Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201833278 | |
Published online | 30 October 2018 |
Impact of clumping on core-collapse supernova radiation
1
Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS, UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515,
Las Condes,
Santiago,
Chile
e-mail: luc.dessart@oca.eu
2
Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh,
3941 O’Hara Street,
Pittsburgh,
PA
15260,
USA
Received:
22
April
2018
Accepted:
7
August
2018
There is both observational and theoretical evidence that the ejecta of core-collapse supernovae (SNe) are structured. Rather than being smooth and homogeneous, the material is made of over-dense and under-dense regions of distinct composition. Here, we have explored the effect of clumping on the SN radiation during the photospheric phase using 1D non-local thermodynamic equilibrium radiative transfer and an ejecta model arising from a blue-supergiant explosion (yielding a Type II-peculiar SN). Neglecting chemical segregation, we adopted a velocity-dependent volume-filling factor approach that assumes that the clumps are small but does not change the column density along any sightline. We find that clumping boosts the recombination rate in the photospheric layers, leading to a faster recession of the photosphere, an increase in bolometric luminosity, and a reddening of the SN colors through enhanced blanketing. The SN bolometric light curve peaks earlier and transitions faster to the nebular phase. On the rise to maximum, the strongest luminosity contrast between our clumped and smooth models is obtained at the epoch when the photosphere has receded to ejecta layers where the clumping factor is only 0.5 – this clumping factor may be larger in nature. Clumping is seen to have a similar influence in a Type II-Plateau SN model. As we neglected both porosity and chemical segregation, our models underestimate the true impact of clumping. These results warrant further study of the influence of clumping on the observables of other SN types during the photospheric phase.
Key words: radiative transfer / radiation: dynamics / supernovae: general / supernova: individual: SN 1987A
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.