Issue |
A&A
Volume 617, September 2018
|
|
---|---|---|
Article Number | A128 | |
Number of page(s) | 8 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201833276 | |
Published online | 02 October 2018 |
Observations of solar chromospheric heating at sub-arcsec spatial resolution⋆
1
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: smitha@mps.mpg.de
2
School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701, Republic of Korea
Received:
22
April
2018
Accepted:
3
July
2018
A wide variety of phenomena such as gentle but persistent brightening, dynamic slender features (∼100 km), and compact (∼1″) ultraviolet (UV) bursts are associated with the heating of the solar chromosphere. High spatio-temporal resolution is required to capture the finer details of the likely magnetic reconnection-driven, rapidly evolving bursts. Such observations are also needed to reveal their similarities to large-scale flares, which are also thought to be reconnection driven, and more generally their role in chromospheric heating. Here we report observations of chromospheric heating in the form of a UV burst obtained with the balloon-borne observatory SUNRISE. The observed burst displayed a spatial morphology similar to that of a large-scale solar flare with a circular ribbon. While the co-temporal UV observations at 1.5″ spatial resolution and 24 s cadence from the Solar Dynamics Observatory showed a compact brightening, the SUNRISE observations at diffraction-limited spatial resolution of 0.1″ at 7 s cadence revealed a dynamic substructure of the burst that it is composed of an extended ribbon-like feature and a rapidly evolving arcade of thin (∼0.1″) magnetic loop-like features, similar to post-flare loops. Such a dynamic substructure reveals the small-scale nature of chromospheric heating in these bursts. Furthermore, based on magnetic field extrapolations, this heating event is associated with a complex fan-spine magnetic topology. Our observations strongly hint at a unified picture of magnetic heating in the solar atmosphere from some large-scale flares to small-scale bursts, all associated with such a magnetic topology.
Key words: Sun: atmosphere / Sun: magnetic fields / Sun: photosphere / Sun: chromosphere / magnetic reconnection
The movie associated to Fig. 2 is available at https://www.aanda.org/
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.