Issue |
A&A
Volume 617, September 2018
|
|
---|---|---|
Article Number | A89 | |
Number of page(s) | 17 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201832753 | |
Published online | 21 September 2018 |
Search for high-mass protostars with ALMA revealed up to kilo-parsec scales (SPARKS)
I. Indication for a centrifugal barrier in the environment of a single high-mass envelope★
1
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69,
53121
Bonn,
Germany
e-mail: csengeri@mpifr-bonn.mpg.de
2
OASU/LAB-UMR5804, CNRS, Université Bordeaux, Allée Geoffroy Saint-Hilaire,
33615
Pessac, France
3
INAF – Osservatorio Astronomico di Cagliari,
Via della Scienza 5,
09047
Selargius (CA), Italy
4
Max- Planck Institute for Astronomy,
Königstuhl 17,
69117
Heidelberg, Germany
5
Departamento de Astronomía, Universidad de Chile,
Casilla 36-D,
Santiago, Chile
6
ENS de Lyon, Univ Lyon 1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Université de Lyon,
69007
Lyon, France
7
IRAM,
300 Rue de la piscine,
38406
Saint-Martin-d’Hères, France
8
Astrophysics Research Institute, Liverpool John Moores University,
Liverpool
L3 5RF, UK
9
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de Mexico,
PO Box 3-72,
58090
Morelia,
Michoacán, Mexico
10
Department of Space, Earth & Environment, Chalmers University of Technology,
Gothenburg, Sweden
11
Department of Astronomy, University of Virginia,
Charlottesville,
VA 22904-4325, USA
12
School of Physical Sciences, University of Kent, Ingram Building,
Canterbury, Kent
CT2 7NH, UK
Received:
2
February
2018
Accepted:
28
May
2018
The conditions leading to the formation of the most massive O-type stars are still an enigma in modern astrophysics. To assess the physical conditions of high-mass protostars in their main accretion phase, here we present a case study of a young massive clump selected from the ATLASGAL survey, G328.2551–0.5321. The source exhibits a bolometric luminosity of 1.3 × 104 L⊙, which allows us to estimate that its current protostellar mass lies between ~11 and 16 M⊙. We show high angular resolution observations with ALMA that reach a physical scale of ~400 au. To reveal the structure of this high-mass protostellar envelope in detail at a ~0.17′′ resolution, we used the thermal dust continuum emission and spectroscopic information, amongst others from the CO (J = 3–2) line, which is sensitive to the high-velocity molecular outflow of the source. We also used the SiO (J = 8–7) and SO2 (J = 82,6 − 71,7) lines, which trace shocks along the outflow, as well as several CH3OH and HC3N lines that probe the gas of the inner envelope in the closest vicinity of the protostar. Our observations of the dust continuum emission reveal a single high-mass protostellar envelope, down to our resolution limit. We find evidence for a compact, marginally resolved continuum source that is surrounded by azimuthal elongations that could be consistent with a spiral pattern. We also report on the detection of a rotational line of CH3OH within its vt = 1 torsionally excited state. This shows two bright emission peaks that are spatially offset from the dust continuum peak and exhibit a distinct velocity component ±4.5 km s−1 offset from the systemic velocity of the source. Rotational diagram analysis and models based on local thermodynamic equilibrium assumption require high CH3OH column densities that reach N(CH3OH) = 1.2−2 × 1019 cm−2, and kinetic temperatures of the order of 160–200 K at the position of these peaks. A comparison of their morphology and kinematics with those of the outflow component of the CO line and the SO2 line suggests that the high-excitation CH3OH spots are associated with the innermost regions of the envelope. While the HC3N v7 = 0 (J = 37–36) line is also detected in the outflow, the HC3N v7 = 1e (J = 38–37) rotational transition within the first vibrationally excited state of the molecule shows a compact morphology. We find that the velocity shifts at the position of the observed high-excitation CH3 OH spots correspond well to the expected Keplerian velocity around a central object with 15 M⊙ consistent with the mass estimate based on the bolometric luminosity of the source. We propose a picture where the CH3 OH emission peaks trace the accretion shocks around the centrifugal barrier, pinpointing the interaction region between the collapsing envelope and an accretion disc. The physical properties of the accretion disc inferred from these observations suggest a specific angular momentum several times higher than typically observed towards low-mass protostars. This is consistent with a scenario of global collapse setting on at larger scales that could carry a more significant amount of kinetic energy compared to the core-collapse models of low-mass star formation. Furthermore, our results suggest that vibrationally excited HC3 N emission could be a new tracer for compact accretion discs around high-mass protostars.
Key words: accretion, accretion disks / stars: massive / stars: formation / submillimeter: ISM
The reduced datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/617/A89
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.