Issue |
A&A
Volume 615, July 2018
|
|
---|---|---|
Article Number | A162 | |
Number of page(s) | 12 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201832932 | |
Published online | 01 August 2018 |
Correcting for peculiar velocities of Type Ia supernovae in clusters of galaxies
1
Université Clermont Auvergne,
CNRS/IN2P3,
Laboratoire de Physique de Clermont,
63000
Clermont-Ferrand,
France
e-mail: pierrefrancois.leget@gmail.com
2
Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University,
Stanford,
CA
94305,
USA
3
Lomonosov Moscow State University, Sternberg Astronomical Institute,
Universitetsky pr. 13,
Moscow
119234,
Russia
4
Physics Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road,
Berkeley,
CA
94720,
USA
5
Laboratoire de Physique Nucléaire et des Hautes Énergies,
Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3,
4 place Jussieu,
75252
Paris Cedex 05,
France
6
Department of Physics, Yale University,
New Haven,
CT
06250-8121,
USA
7
Department of Physics, University of California Berkeley,
366 LeConte Hall MC 7300,
Berkeley,
CA
94720-7300,
USA
8
Université de Lyon, Université de Lyon 1, Villeurbanne, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon,
69622
Lyon,
France
9
Department of Physics and Astronomy, University of Southampton,
Southampton,
Hampshire
SO17 1BJ,
UK
10
The Oskar Klein Centre, Department of Physics, AlbaNova, Stockholm University,
106 91
Stockholm,
Sweden
11
Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346,
13288
Marseille,
France
12
Max-Planck Institut für Astrophysik,
Karl-Schwarzschild-Str. 1,
85748
Garching,
Germany
13
Las Cumbres Observatory Global Telescope Network,
6740 Cortona Dr., Suite 102 Goleta,
CA 93117,
USA
14
Department of Physics, University of California,
Santa Barbara,
CA
93106-9530,
USA
15
Institut fũr Physik, Humboldt-Universitãt zu Berlin,
Newtonstr. 15,
12489
Berlin,
Germany
16
Deutsches Elektronen-Synchrotron,
15735
Zeuthen,
Germany
17
Tsinghua Center for Astrophysics, Tsinghua University,
Beijing
100084,
PR China
18
Centre de Recherche Astronomique de Lyon, Université Lyon 1,
9 Avenue Charles André,
69561
Saint-Genis-Laval,
France
19
Space Telescope Science Institute,
3700 San Martin Drive,
Baltimore,
MD
21218,
USA
20
European Southern Observatory,
Karl-Schwarzschild-Str. 2,
85748
Garching,
Germany
21
Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road MS 50B-4206,
Berkeley,
CA
94720,
USA
22
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,
5-1-5 Kashiwanoha,
Kashiwa,
Chiba
277-8583,
Japan
Received:
1
March
2018
Accepted:
6
April
2018
Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift (z) of the SNe Ia have to be determined. The uncertainty on z includes an unknown peculiar velocity, which can be very large for SNe Ia in the virialized cores of massive clusters.
Aims. We determine which SNe Ia exploded in galaxy clusters using 145 SNe Ia from the Nearby Supernova Factory. We then study how the correction for peculiar velocities of host galaxies inside the clusters improves the Hubble residuals.
Methods. We found 11 candidates for membership in clusters. We applied the biweight technique to estimate the redshift of a cluster. Then, we used the galaxy cluster redshift instead of the host galaxy redshift to construct the Hubble diagram.
Results. For SNe Ia inside galaxy clusters, the dispersion around the Hubble diagram when peculiar velocities are taken into account is smaller compared with a case without peculiar velocity correction, which has a wRMS = 0.130 ± 0.038 mag instead of wRMS = 0.137 ± 0.036 mag. The significance of this improvement is 3.58σ. If we remove the very nearby Virgo cluster member SN2006X (z < 0.01) from the analysis, the significance decreases to 1.34σ. The peculiar velocity correction is found to be highest for the SNe Ia hosted by blue spiral galaxies. Those SNe Ia have high local specific star formation rates and smaller stellar masses, which is seemingly counter to what might be expected given the heavy concentration of old, massive elliptical galaxies in clusters.
Conclusions. As expected, the Hubble residuals of SNe Ia associated with massive galaxy clusters improve when the cluster redshift is taken as the cosmological redshift of the supernova. This fact has to be taken into account in future cosmological analyses in order to achieve higher accuracy for cosmological redshift measurements. We provide an approach to do so.
Key words: supernovae: general / galaxies: clusters: general / galaxies: distances and redshifts / dark energy
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0;), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.