Issue |
A&A
Volume 612, April 2018
H.E.S.S. phase-I observations of the plane of the Milky Way
|
|
---|---|---|
Article Number | A2 | |
Number of page(s) | 25 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201629377 | |
Published online | 09 April 2018 |
The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey
1
Centre for Space Research, North-West University, 2520 Potchefstroom,
South Africa
3
Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg,
Germany
4
Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg,
Germany
4
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2,
Ireland
5
National Academy of Sciences of the Republic of Armenia, Marshall Baghramian Avenue, 24, 0019 Yerevan,
Republic of Armenia
6
Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan,
Armenia
7
Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin,
Germany
8
University of Namibia, Department of Physics, Private Bag 13301 Windhoek,
Namibia
9
GRAPPA, Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam,
The Netherlands
10
Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Växjö,
Sweden
11
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum,
Germany
12
GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam,
The Netherlands
13
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, 6020 Innsbruck,
Austria
14
School of Physical Sciences, University of Adelaide, 5005 Adelaide,
Australia
15
LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon,
France
16
Sorbonne Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), 4 place Jussieu, 75252 Paris Cedex 5,
France
17
Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, 34095 Montpellier Cedex 5,
France
18
DSM/Irfu, CEA Saclay, 91191 Gif-Sur-Yvette Cedex,
France
19
Astronomical Observatory, The University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw,
Poland
20
Aix-Marseille Université,CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille,
France
21
Instytut Fizyki Ja̧drowej PAN, ul. Radzikowskiego 152, 31-342 Kraków,
Poland
22
Funded by EU FP7 Marie Curie, grant agreement No. PIEF-GA-2012-332350
23
School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2050 Johannesburg,
South Africa
24
Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université Savoie Mont-Blanc, CNRS/IN2P3, 74941 Annecy-le-Vieux,
France
25
Landessternwarte, Universität Heidelberg, Königstuhl, 69117 Heidelberg,
Germany
26
Université Bordeaux, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan, 33175 Gradignan,
France
27
Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, 10691 Stockholm,
Sweden
28
Wallenberg Academy Fellow
29
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen,
Germany
30
Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3, 91128 Palaiseau,
France
31
APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13,
France
32
Univ. Grenoble Alpes, IPAG, 38000 Grenoble, France CNRS, IPAG, 38000 Grenoble,
France
33
Department of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH,
UK
34
Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw,
Poland
35
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam,
Germany
36
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen,
Germany
37
DESY, 15738 Zeuthen,
Germany
38
Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków,
Poland
39
Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun,
Poland
40
Department of Physics, University of the Free State, PO Box 339, 9300 Bloemfontein,
South Africa
41
Heisenberg Fellow (DFG), ITA Universität Heidelberg,
Germany
42
GRAPPA, Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam,
The Netherlands
43
Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, 171-8501 Tokyo,
Japan
44
Now at Santa Cruz Institute for Particle Physics and Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064,
USA
45
Now at: Technische Universität Kaiserslautern, Fachgebiet Bauphysik/Energetische Gebäudeoptimierung, Paul-Ehrlich-Str., Gebäude 29, Raum 214, 67663 Kaiserslautern,
Germany
46
Now at: Institute for Space Sciences (CSIC–IEEC), Campus UAB, Carrer de Can Magrans s/n, 08193 Barcelona,
Spain
47
Now at: Karlsruhe Institute of Technology, Institute for Nuclear Physics, PO Box 3640, 76021 Karlsruhe,
Germany
★ Corresponding authors: H.E.S.S. Collaboration,
e-mail: contact.hess@hess-experiment.eu
Received:
22
July
2016
Accepted:
24
February
2017
The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down power Ė. This seems to be caused both by an increase of extension with decreasing Ė, and hence with time, compatible with a power law RPWN(Ė) ~Ė−0.65±0.20, and by a mild decrease of TeV gamma-ray luminosity with decreasing Ė, compatible with L1−10 TeV ~Ė0.59±0.21. We also find that the offsets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency L1−10 TeV∕Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.
Key words: gamma rays: general / catalogs / surveys / ISM: supernova remnants / pulsars: general
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.