Issue |
A&A
Volume 610, February 2018
|
|
---|---|---|
Article Number | A76 | |
Number of page(s) | 10 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201731937 | |
Published online | 05 March 2018 |
Thermal fracturing on comets
Applications to 67P/Churyumov-Gerasimenko
1
Aix-Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille,
Marseille, France
e-mail: Nicholas.Attree@lam.fr
2
Physikalisches Institut, Universität Bern,
Sidlerstrasse 5,
3012
Berne, Switzerland
3
Deutsches Zentrum für Luft-und Raumfahrt (DLR), Institut für Planetenforschung,
Rutherfordstraße 2,
12489
Berlin, Germany
4
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen, Germany
Received:
12
September
2017
Accepted:
16
November
2017
We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet’s surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet’s complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳50 J m−2 K−1 s−1∕2) and ice content (≳45% at the equator). In this case, stresses penetrate to a typical depth of ~0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.
Key words: comets: general / comets: individual: 67P/Churyumov-Gerasimenko / planets and satellites: physical evolution
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0;), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.