Issue |
A&A
Volume 610, February 2018
|
|
---|---|---|
Article Number | A34 | |
Number of page(s) | 8 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201731864 | |
Published online | 22 February 2018 |
Glimpses of the past activity of Sgr A★ inferred from X-ray echoes in Sgr C
1
Irfu/Département d'astrophysique, CEA Paris-Saclay, Orme des Merisiers,
91191
Gif-sur-Yvette, France
e-mail: dimitri.chuard@cea.fr
2
APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, USPC,
75205
Paris Cedex 13, France
3
Space Sciences Laboratory, 7 Gauss Way, University of California,
Berkeley,
CA
94720-7420, USA
4
Dep. of Physics and Astronomy, University of California,
Los Angeles,
CA
90095, USA
5
Max-Planck-Institut für extraterrestrische Physik,
85748
Garching, Germany
6
School of Physical Sciences, Dublin City University,
Glasnevin,
Dublin 9, Ireland
7
Dublin Institute of Advanced Studies,
31 Fitzwilliam Place,
Dublin 2, Ireland
Received:
30
August
2017
Accepted:
21
November
2017
Context. For a decade now, evidence has accumulated that giant molecular clouds located within the central molecular zone of our Galaxy reflect X-rays coming from past outbursts of the Galactic supermassive black hole. However, the number of illuminating events as well as their ages and durations are still unresolved questions.
Aims. We aim to reconstruct parts of the history of the supermassive black hole Sgr A★ by studying this reflection phenomenon in the molecular complex Sgr C and by determining the line-of-sight positions of its main bright substructures.
Methods. Using observations made with the X-ray observatories XMM-Newton and Chandra and between 2000 and 2014, we investigated the variability of the reflected emission, which consists of a Fe Kα line at 6.4 keV and a Compton continuum. We carried out an imaging and a spectral analysis. We also used a Monte Carlo model of the reflected spectra to constrain the line-of-sight positions of the brightest clumps, and hence to assign an approximate date to the associated illuminating events.
Results. We show that the Fe Kα emission from Sgr C exhibits significant variability in both space and time, which confirms its reflection origin. The most likely illuminating source is Sgr A★. On the one hand, we report two distinct variability timescales, as one clump undergoes a sudden rise and fall in about 2005, while two others vary smoothly throughout the whole 2000–2014 period. On the other hand, by fitting the Monte Carlo model to the data, we are able to place tight constraints on the 3D positions of the clumps. These two independent approaches provide a consistent picture of the past activity of Sgr A★, since the two slowly varying clumps are located on the same wavefront, while the third (rapidly varying) clump corresponds to a different wavefront, that is, to a different illuminating event.
Conclusions. This work shows that Sgr A★ experienced at least two powerful outbursts in the past 300 yrs, and for the first time, we provide an estimation of their age. Extending this approach to other molecular complexes, such as Sgr A, will allow this two-event scenario to be tested further.
Key words: Galaxy: center / ISM: clouds / X-rays: ISM
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.