Issue |
A&A
Volume 609, January 2018
|
|
---|---|---|
Article Number | A128 | |
Number of page(s) | 19 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201731604 | |
Published online | 01 February 2018 |
Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions
1 Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa, Italy
e-mail: ignazio.bombaci@unipi.it; domenico.logoteta@infn.pi.it
2 INFN, Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa, Italy
Received: 19 July 2017
Accepted: 3 October 2017
Aims. We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars.
Methods. The EOS is derived using the Brueckner–Bethe–Goldstone quantum many-body theory in the Brueckner–Hartree–Fock approximation. Neutron star properties are next computed solving numerically the Tolman–Oppenheimer–Volkov structure equations.
Results. Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to ~4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.
Key words: dense matter / equation of state / stars: neutron
© ESO, 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.