Issue |
A&A
Volume 607, November 2017
|
|
---|---|---|
Article Number | A118 | |
Number of page(s) | 10 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201628877 | |
Published online | 23 November 2017 |
Molecular transitions as probes of the physical conditions of extragalactic environments⋆
Department of Physics and Astronomy, University College London, Gower street, London, WC1E 6BT, UK
e-mail: serena.viti@ucl.ac.uk
Received: 9 May 2016
Accepted: 29 August 2017
Aims. We present a method to interpret molecular observations and molecular line ratios in nearby extragalactic regions.
Methods. Ab initio grids of time dependent chemical models, varying in gas density, temperature, cosmic ray ionization rate, and radiation field, are used as inputs into RADEX calculations. Tables of abundances, column densities, theoretical line intensities, and line ratios for some of the most used dense gas tracers are provided. The degree of correlation as well as degeneracy inherent in molecular ratios is discussed. Comparisons of the theoretical intensities with example observations are also provided.
Results. We find that, within the parameters space explored, chemical abundances can be constrained by a well-defined set of gas density, gas temperature, and cosmic ray ionization rates for the species we investigate here. However, line intensities, and more importantly line ratios, from different chemical models can be very similar, thereby leading to a clear degeneracy. We also find that the gas subjected to a galactic cosmic ray ionization rate will not necessarily have reached steady state in 1 million years. The species most affected by time dependency effects are HCN and CS, which are both high density tracers. We use our ab initio method to fit an example set of data from two galaxies, i.e. M 82 and NGC 253. We find that (i) molecular line ratios can be easily matched even with erroneous individual line intensities; (ii) no set of species can be matched by a one-component interstellar medium (ISM); and (iii) a species may be a good tracer of an energetic process but only under specific density and temperature conditions.
Conclusions. We provide tables of chemical abundances and line intensities ratios for some of the most commonly observed extragalactic tracers of dense gas for a grid of models. We show that by taking the chemistry behind each species and the individual line intensities into consideration, many degeneracies that arise by just using molecular line ratios can be avoided. Finally we show that using a species or a ratio as a tracer of an individual energetic process, such as cosmic rays and UV, ought to be done with caution.
Key words: galaxies: active / astrochemistry / molecular processes / radiative transfer
Tables 2–11 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A118
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.