Issue |
A&A
Volume 606, October 2017
|
|
---|---|---|
Article Number | A56 | |
Number of page(s) | 8 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201731666 | |
Published online | 09 October 2017 |
The potential of tracing the star formation history with H I 21-cm in intervening absorption systems
School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
e-mail: Stephen.Curran@vuw.ac.nz
Received: 28 July 2017
Accepted: 9 August 2017
Unlike the neutral gas density, which remains largely constant over redshifts of 0 ≲ z ≲ 5, the star formation density, ψ∗, exhibits a strong redshift dependence, increasing from the present day before peaking at a redshift of z ≈ 2.5. Thus, there is a stark contrast between the star formation rate and the abundance of raw material available to fuel it. However, using the ratio of the strength of the H i 21-cm absorption to the total neutral gas column density to quantify the spin temperature, Tspin, of the gas, it has recently been shown that 1 /Tspin may trace ψ∗. This would be expected on the grounds that the cloud of gas must be sufficiently cool to collapse under its own gravity. This, however, relies on very limited data and so here we explore the potential of applying the above method to absorbers for which individual column densities are not available (primarily Mg ii absorption systems). By using the mean value as a proxy to the column density of the gas at a given redshift, we do, again, find that 1 /Tspin (degenerate with the absorber-emitter size ratio) traces ψ∗. If confirmed by higher redshift data, this could offer a powerful tool for future surveys for cool gas throughout the Universe with the Square Kilometre Array.
Key words: galaxies: high-redshift / galaxies: star formation / Galaxy: evolution / galaxies: ISM / quasars: absorption lines / radio lines: galaxies
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.