Issue |
A&A
Volume 605, September 2017
|
|
---|---|---|
Article Number | A96 | |
Number of page(s) | 10 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201730857 | |
Published online | 18 September 2017 |
Analytical model of multi-planetary resonant chains and constraints on migration scenarios
1 Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland
e-mail: jean-baptiste.delisle@unige.ch
2 ASD, IMCCE, Observatoire de Paris – PSL Research University, UPMC Univ. Paris 6, CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France
Received: 23 March 2017
Accepted: 22 June 2017
Resonant chains are groups of planets for which each pair is in resonance, with an orbital period ratio locked at a rational value (2/1, 3/2, etc.). Such chains naturally form as a result of convergent migration of the planets in the proto-planetary disk. In this article, I present an analytical model of resonant chains of any number of planets. Using this model, I show that a system captured in a resonant chain can librate around several possible equilibrium configurations. The probability of capture around each equilibrium depends on how the chain formed, and especially on the order in which the planets have been captured in the chain. Therefore, for an observed resonant chain, knowing around which equilibrium the chain is librating allows for constraints to be put on the formation and migration scenario of the system. I apply this reasoning to the four planets orbiting Kepler-223 in a 3:4:6:8 resonant chain. I show that the system is observed around one of the six equilibria predicted by the analytical model. Using N-body integrations, I show that the most favorable scenario to reproduce the observed configuration is to first capture the two intermediate planets, then the outermost, and finally the innermost.
Key words: celestial mechanics / planets and satellites: general
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.