Issue |
A&A
Volume 605, September 2017
|
|
---|---|---|
Article Number | A72 | |
Number of page(s) | 16 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201630022 | |
Published online | 12 September 2017 |
AMD-stability and the classification of planetary systems⋆
ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France
e-mail: laskar@imcce.fr
Received: 7 November 2016
Accepted: 23 January 2017
We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known.
Key words: chaos / celestial mechanics / planets and satellites: dynamical evolution and stability / planets and satellites: formation / planets and satellites: general
The AMD-stability coefficients of selected planetary systems are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A72
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.