Issue |
A&A
Volume 601, May 2017
|
|
---|---|---|
Article Number | A119 | |
Number of page(s) | 25 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201629854 | |
Published online | 15 May 2017 |
An abundance analysis from the STIS-HST UV spectrum of the non-magnetic Bp star HR 6000
1 Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, via Tiepolo 11, 34143 Trieste, Italy
e-mail: castelli@oats.inaf.it
2 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042, USA
3 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389, USA
4 Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Catania, via S. Sofia 78, 95123 Catania, Italy
5 Universita’ di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, via S. Sofia 78, 95123 Catania, Italy
Received: 6 October 2016
Accepted: 6 December 2016
Context. The sharp-line spectrum of the non-magnetic, main-sequence Bp star HR 6000 has peculiarities that distinguish it from those of the HgMn stars with which it is sometimes associated. The position of the star close to the center of the Lupus 3 molecular cloud, whose estimated age is on the order of 9.1 ± 2.1 Myr, has lead to the hypothesis that the anomalous peculiarities of HR 6000 can be explained by the young age of the star.
Aims. Observational material from the Hubble Space Telescope (HST) provides the opportunity to extend the abundance analysis previously performed for the optical region and clarify the properties of this remarkable peculiar star. Our aim was to obtain the atmospheric abundances for all the elements observed in a broad region from 1250 to 10 000 Å.
Methods. An LTE synthetic spectrum was compared with a high-resolution spectrum observed with the Space Telescope Imaging Spectrograph (STIS) equipment in the 1250−3040 Å interval. Abundances were changed until the synthetic spectrum fit the observed spectrum. The assumed model is an LTE, plane-parallel, line-blanketed ATLAS12 model already used for the abundance analysis of a high-resolution optical spectrum observed at ESO with the Ultraviolet and Visual Echelle Spectrograph (UVES). The stellar parameters are Teff = 13450 K, log g = 4.3, and zero microturbulent velocity.
Results. Abundances for 28 elements and 7 upper limits were derived from the ultraviolet spectrum. Adding results from previous work, we have now quantitative results for 37 elements, some of which show striking contrasts with those of a broad sample of HgMn stars. The analysis has pointed out numerous abundance anomalies, such as ionization anomalies and line-to-line variation in the derived abundances, in particular for silicon. The inferred discrepancies could be explained by non-LTE effects and with the occurrence of diffusion and vertical abundance stratification. In the framework of the last hypothesis, we obtained, by means of trial and error, empirical step functions of abundance versus optical depth log (τ5000) for carbon, nitrogen, silicon, manganese, and gold, while we failed to find such a function for phosphorous. The poor results for carbon, and mostly for phosphorus, suggest the possible importance in this star of NLTE effects to be investigated in future works.
Key words: stars: abundances / stars: atmospheres / stars: chemically peculiar / stars: individual: HR 6000
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.