Issue |
A&A
Volume 599, March 2017
|
|
---|---|---|
Article Number | A99 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201629220 | |
Published online | 07 March 2017 |
Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B⋆
1 Univ. Grenoble Alpes, IRAM, 38000 Grenoble, France
e-mail: orkisz@iram.fr
2 IRAM, 300 rue de la Piscine, 38406 Saint-Martin-d’ Hères, France
3 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, 75005 Paris, France
4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 92190 Meudon, France
5 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA
7 Joint ALMA Observatory (JAO), Alonso de Cordova 3107 Vitacura, Santiago de Chile, Chile
8 ICMM, Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain
9 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903, USA
10 School of Physics and Astronomy, Cardiff University, Queen’s buildings, Cardiff CF24 3AA, UK
11 IRAM, Avenida Divina Pastora, 7, Núcleo Central, 18012 Granada, España
12 Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, Centre d’Étude de Saclay, 91191 Gif-Sur-Yvette, France
Received: 30 June 2016
Accepted: 2 January 2017
Context. The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions.
Aims. We try to observationally derive the fractions of momentum density (ρv) contained in the solenoidal and compressive modes of turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud.
Methods. The implementation of a statistical method applied to a 13CO(J = 1−0) datacube obtained with the IRAM-30 m telescope, enables us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, which yields an estimate of the compressive versus solenoidal ratio in various regions of the cloud.
Results. Despite the Orion B molecular cloud being highly supersonic (mean Mach number ~ 6), the fractions of motion in each mode diverge significantly from equipartition. The cloud’s motions are, on average, mostly solenoidal (excess > 8% with respect to equipartition), which is consistent with its low star formation rate. On the other hand, the motions around the main star forming regions (NGC 2023 and NGC 2024) prove to be strongly compressive.
Conclusions. We have successfully applied to observational data a method that has so far only been tested on simulations, and we have shown that there can be a strong intra-cloud variability of the compressive and solenoidal fractions, these fractions being in turn related to the star formation efficiency. This opens a new possibility for star formation diagnostics in galactic molecular clouds.
Key words: turbulence / methods: statistical / ISM: clouds / ISM: kinematics and dynamics / radio lines: ISM / ISM: individual objects: Orion B
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.