Issue |
A&A
Volume 598, February 2017
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201629694 | |
Published online | 26 January 2017 |
Kinetic temperature of massive star forming molecular clumps measured with formaldehyde⋆
1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: xdtang@mpifr-bonn.mpg.de
2 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 830011 Urumqi, PR China
3 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 830011 Urumqi, PR China
4 Astronomy Department, King Abdulaziz University, PO Box 80203, 21589 Jeddah, Saudi Arabia
5 Department of Astronomy, Nanjing University, 210093 Nanjing, PR China
Received: 12 September 2016
Accepted: 5 October 2016
Context. For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature.
Aims. We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps.
Methods. Three 218 GHz transitions (JKAKC = 303–202, 322–221, and 321–220) of para-H2CO were observed with the 15 m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322–221/303–202 and 321–220/303–202 ratios.
Results. The gas kinetic temperatures derived from the para-H2CO (321–220/303–202) line ratios range from 30 to 61 K with an average of 46 ± 9 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2, 2)/(1, 1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2, 2)/(1, 1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions.
Key words: stars: formation / stars: massive / ISM: clouds / ISM: molecules / radio lines: ISM
The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A30
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.