Issue |
A&A
Volume 598, February 2017
|
|
---|---|---|
Article Number | A73 | |
Number of page(s) | 6 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201628618 | |
Published online | 02 February 2017 |
Time dependence of Fe/O ratio within a 3D solar energetic particle propagation model including drift
1 Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, UK
e-mail: sdalla@uclan.ac.uk
2 Met Office, Exeter, EX1 3PB, UK
Received: 31 March 2016
Accepted: 3 November 2016
Context. The intensity profiles of iron and oxygen in Solar Energetic Particle (SEP) events often display differences that result in a decreasing Fe/O ratio over time. The physical mechanisms behind this behaviour are not fully understood, but these observational signatures provide important tests of physical modelling efforts.
Aims. In this paper we study the propagation of iron and oxygen SEP ions using a 3D model of propagation which includes the effect of guiding centre drift in a Parker spiral magnetic field. We derive time intensity profiles for a variety of observer locations and study the temporal evolution of the Fe/O ratio.
Methods. We use a 3D full orbit test particle model which includes scattering. The configuration of the interplanetary magnetic field is a unipolar Parker spiral. Particles are released instantaneously from a compact region at two solar radii and allowed to propagate in 3D.
Results. Both Fe and O experience significant transport across the magnetic field due to gradient and curvature drifts. We find that Fe ions drift more than O ions due to their larger mass-to-charge ratio, so that an observer that is not magnetically well connected to the source region will observe Fe arriving before O, for particles within the same range in energy per nucleon. As a result, for the majority of observer locations, the Fe/O ratio displays a decrease in time.
Conclusions. We conclude that propagation effects associated with drifts produce a decay over time of the Fe/O ratio, qualitatively reproducing that observed in SEP event profiles.
Key words: Sun: particle emission / Sun: heliosphere / Sun: activity
© ESO, 2017
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.