Issue |
A&A
Volume 597, January 2017
|
|
---|---|---|
Article Number | A71 | |
Number of page(s) | 16 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201629612 | |
Published online | 03 January 2017 |
Metallicity dependence of envelope inflation in massive stars
1 Argelander-Insitut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
e-mail: dsanyal@astro.uni-bonn.de
2 Department of Physics and Astronomy, Seoul National University, 151-747 Seoul, Korea
3 Astronomical Institute of the Czech Academy of Sciences, 251 65 Ondřejov, Czech Republic
Received: 30 August 2016
Accepted: 18 November 2016
Context. Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute extended envelopes.
Aims. We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish the impact of the stellar metallicity on the effect of envelope inflation.
Methods. We analysed published grids of core-hydrogen burning massive star models computed with metallicities appropriate for massive stars in the Milky Way, the Large Magellanic Cloud, and the Small Magellanic Cloud, the very metal poor dwarf galaxy I Zwicky 18, and for metal-free chemical composition.
Results. Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity peaks of iron, helium, and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of the zero-age main sequence and a broadening of the main-sequence band in the upper part of the Hertzsprung-Russell diagram. We derive the limiting L/M-values as a function of the stellar surface temperature above which inflation occurs, and find them to be higher for lower metallicity. While Galactic models show inflation above ~29 M⊙, the corresponding mass limit for Population III stars is ~150 M⊙. While the masses of the inflated envelopes are generally low, we find that they can reach 1−100 M⊙ in models with effective temperatures below ~8000 K, with higher masses reached by models of lower metallicity.
Conclusions. Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in luminous blue variables such as S Doradus and η Carina.
Key words: stars: evolution / stars: massive / stars: interiors / stars: mass-loss
© ESO 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.