Issue |
A&A
Volume 597, January 2017
|
|
---|---|---|
Article Number | A65 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201629378 | |
Published online | 03 January 2017 |
Fe K and ejecta emission in SNR G15.9+0.2 with XMM-Newton
Laboratoire AIM, IRFU/Service d’Astrophysique – CEA/DRF – CNRS – Université Paris Diderot, Bât. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
e-mail: pierre.maggi@cea.fr
Received: 22 July 2016
Accepted: 1 November 2016
Aims. We present a study of the Galactic supernova remnant SNR G15.9+0.2 with archival XMM-Newton observations.
Methods. EPIC data are used to investigate the morphological and spectral properties of the remnant, searching in particular for supernova ejecta and Fe K line emission. By comparing the SNR’s X-ray absorption column density with the atomic and molecular gas distribution along the line of sight, we attempt to constrain the distance to the SNR.
Results. Prominent line features reveal the presence of ejecta. Abundance ratios of Mg, Si, S, Ar, and Ca strongly suggest that the progenitor of SNR G15.9+0.2 was a massive star with a main sequence mass likely in the range 20–25 M⊙, strengthening the physical association with a candidate central compact object detected with Chandra. Using EPIC’s collective power, Fe K line emission from SNR G15.9+0.2 is detected for the first time. We measure the line properties and find evidence for spatial variations. We discuss how the source fits within the sample of SNRs with detected Fe K emission and find that it is the core-collapse SNR with the lowest Fe K centroid energy. We also present some caveats regarding the use of Fe K line centroid energy as a typing tool for SNRs. Only a lower limit of 5 kpc is placed on the distance to SNR G15.9+0.2, constraining its age to tSNR ≳ 2 kyr.
Key words: ISM: supernova remnants / X-rays: individuals: SNR G15.9+0.2 / X-rays: ISM
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.