Issue |
A&A
Volume 594, October 2016
|
|
---|---|---|
Article Number | A93 | |
Number of page(s) | 10 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201628858 | |
Published online | 19 October 2016 |
Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines⋆
1 INAF–Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
e-mail: scolombo@astropa.unipa.it
2 Dipartimento di Fisica & Chimica, Università degli Studi di Palermo, Piazza del Parlamento 1, 90143 Palermo, Italy
Received: 5 May 2016
Accepted: 11 July 2016
Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear.
Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines.
Methods. We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles.
Results. The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200−400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1.
Conclusions. Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation.
Key words: accretion, accretion disks / magnetohydrodynamics (MHD) / stars: pre-main sequence / shock waves / X-rays: stars / ultraviolet: stars
Movies are available at http://www.aanda.org
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.