Issue |
A&A
Volume 593, September 2016
|
|
---|---|---|
Article Number | A69 | |
Number of page(s) | 10 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201628197 | |
Published online | 22 September 2016 |
Asteroseismology of the δ Scuti star HD 50844
1 Yunnan Observatories, Chinese Academy of Sciences, PO Box 110, 650011 Kunming, PR China
e-mail: chenxinghao@ynao.ac.cn; ly@ynao.ac.cn
2 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, PO Box 110, 650011 Kunming, PR China
3 University of Chinese Academy of Sciences, 100049 Beijing, PR China
Received: 27 January 2016
Accepted: 30 June 2016
Aims. We aim to probe the internal structure and investigate with asteroseismology for more detailed information on the δ Scuti star HD 50844.
Methods. We analyse the observed frequencies of the δ Scuti star HD 50844 and search for possible multiplets, which are based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 only by means of rotational splitting. We then compare these with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model.
Results. There are three multiplets, including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree l and azimuthal number m are unique. The corresponding rotational period of HD 50844 is found to be 2.44+0.13-0.08 days. The physical parameters of HD 50844 are well limited in a small region by three modes that have been identified as nonradial ones (f11, f22, and f29) and by the fundamental radial mode (f4). Our results show that the three nonradial modes (f11, f22, and f29) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4) mainly represents the property of the stellar envelope. To fit these four pulsation modes, both the helium core and the stellar envelope need to be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ± 0.004 M⊙ for the first time. The physical parameters of HD 50844 are determined to be M = 1.81 ± 0.01 M⊙, Z = 0.008 ± 0.001. Teff = 7508 ± 125 K, log g = 3.658 ± 0.004, R = 3.300 ± 0.023 R⊙, L = 30.98 ± 2.39 L⊙.
Key words: asteroseismology / stars: variables: δScuti / stars: individual: HD 50844
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.