Issue |
A&A
Volume 592, August 2016
|
|
---|---|---|
Article Number | A119 | |
Number of page(s) | 9 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201628587 | |
Published online | 09 August 2016 |
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD testbed
1 LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, 92195 Meudon, France
e-mail: jacques-robert.delorme@obspm.fr
2 Space Telescope Science Institute, 3700 San Martin Drive, 21218 Baltimore MD, USA
3 Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille (LAM), UMR 7326, 13388 Marseille, France
Received: 24 March 2016
Accepted: 26 May 2016
Context. Specific high-contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light.
Aims. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory.
Methods. First, we consider the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components, and the quality control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared with numerical simulations to check agreement with the performance predictions.
Results. With the manufactured prototype and using a dark hole technique based on the self-coherent camera, we obtain contrast levels down to 2 × 10-8 between 5 and 17λ0/D in monochromatic light (640 nm). We also reach contrast levels of 4 × 10-8 between 7 and 17λ0/D in broadband (λ0 = 675 nm, Δλ = 250 and Δλ/λ0 = 40%), which demonstrates the excellent chromatic performance of the dual-zone phase mask coronagraph.
Conclusions. The performance reached by the dual-zone phase mask coronagraph is promising for future high-contrast imaging instruments that aim to detect and spectrally characterize old or light gaseous planets.
Key words: instrumentation: high angular resolution / techniques: high angular resolution / planets and satellites: detection
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.