Issue |
A&A
Volume 592, August 2016
|
|
---|---|---|
Article Number | A13 | |
Number of page(s) | 10 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201628374 | |
Published online | 04 July 2016 |
An extreme planetary system around HD 219828
One long-period super Jupiter to a hot-Neptune host star⋆,⋆⋆
1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
e-mail: nuno@astro.up.pt
2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
3 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland
4 CIDMA, Departamento de Física, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
5 ASD, IMCCE-CNRS UMR 8028, Observatoire de Paris, PSL Research University, 77 Av. Denfert-Rochereau, 75014 Paris, France
6 Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille UMR 7326, 13388 Marseille Cedex 13, France
7 European Southern Observatory (ESO), 19001 Casilla, Santiago, Chile
8 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’ Observatoire, France
9 Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France
10 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK
11 European Space Agency (ESA), Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Received: 24 February 2016
Accepted: 10 May 2016
Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution.
Aims. We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected.
Methods. We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses.
Results. We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M⊕ and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero.
Conclusions. The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected, we will be able to fully characterise the system, including the relative orbital inclinations. With a clearly known mass, HD 219828 c may become a benchmark object for the range in between giant planets and brown dwarfs.
Key words: planetary systems / techniques: spectroscopic / techniques: radial velocities / stars: individual: HD 219828
Based on observations collected with the HARPS spectrograph at the 3.6-m ESO telescope (La Silla-Paranal Observatory, Chile), runs ID 072.C-0488, 075.C-0332, 075.C-0332, 076.C-0155, 077.C-0101, 183.C-0972, 091.C-0936, and 192.C-0852, as well as with the ELODIE and SOPHIE spectrographs, at the OHP Observatory, France.
Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A13
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.