Issue |
A&A
Volume 592, August 2016
|
|
---|---|---|
Article Number | A31 | |
Number of page(s) | 22 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201527974 | |
Published online | 12 July 2016 |
Physical characteristics of bright Class I methanol masers
1 Max-Planck-Institut für Radioastronomie, Auf Dem Hügel 69, 53121 Bonn, Germany
e-mail: sleurini@mpifr-bonn.mpg.de
2 INAF−Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
3 Dublin Institute of Advanced Studies, 31 Fitzwilliam Place, 2 Dublin, Ireland
Received: 15 December 2015
Accepted: 11 May 2016
Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks.
Aims. We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results.
Methods. We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas.
Results. We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107−108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the 44 GHz line is almost always stronger than the 36 GHz maser. By comparison between observed isotropic photon luminosities and our model predictions, we infer maser beam solid angles of roughly 10-3 steradian.
Conclusions. We find that the Class I masers can reasonably be separated into three families: the (J + 1)-1−J0-E type series, the (J + 1)0−J1-A type, and the J2−J1-E lines at 25 GHz. The 25 GHz lines behave in a different fashion from the other masers as they are only inverted at high densities above 106 cm-3 in contrast to other Class I masers. Therefore, the detection of maser activity in all three families is a clear indication of high densities.
Key words: ISM: molecules / masers / stars: formation
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.