Issue |
A&A
Volume 591, July 2016
|
|
---|---|---|
Article Number | A12 | |
Number of page(s) | 11 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201628475 | |
Published online | 03 June 2016 |
Cygrid: A fast Cython-powered convolution-based gridding module for Python⋆
1 Max-Planck-Institut für Radioastronomie (MPIfR), Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: bwinkel@mpifr.de
2 Argelander-Institut für Astronomie (AIfA), Auf dem Hügel 71, 53121 Bonn, Germany
Received: 9 March 2016
Accepted: 19 April 2016
Context. Data gridding is a common task in astronomy and many other science disciplines. It refers to the resampling of irregularly sampled data to a regular grid.
Aims. We present cygrid, a library module for the general purpose programming language Python. Cygrid can be used to resample data to any collection of target coordinates, although its typical application involves FITS maps or data cubes. The FITS world coordinate system standard is supported.
Methods. The regridding algorithm is based on the convolution of the original samples with a kernel of arbitrary shape. We introduce a lookup table scheme that allows us to parallelize the gridding and combine it with the HEALPix tessellation of the sphere for fast neighbor searches.
Results. We show that for n input data points, cygrids runtime scales between O(n) and O(nlog n) and analyze the performance gain that is achieved using multiple CPU cores. We also compare the gridding speed with other techniques, such as nearest-neighbor, and linear and cubic spline interpolation.
Conclusions. Cygrid is a very fast and versatile gridding library that significantly outperforms other third-party Python modules, such as the linear and cubic spline interpolation provided by SciPy.
Key words: methods: numerical / techniques: image processing
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.